These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 11788754)

  • 1. Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis.
    Mani S; Van De Cotte B; Van Montagu M; Verbruggen N
    Plant Physiol; 2002 Jan; 128(1):73-83. PubMed ID: 11788754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of free proline revealed in an arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase.
    Nanjo T; Fujita M; Seki M; Kato T; Tabata S; Shinozaki K
    Plant Cell Physiol; 2003 May; 44(5):541-8. PubMed ID: 12773641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis.
    Abrahám E; Rigó G; Székely G; Nagy R; Koncz C; Szabados L
    Plant Mol Biol; 2003 Feb; 51(3):363-72. PubMed ID: 12602867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes.
    Miller G; Honig A; Stein H; Suzuki N; Mittler R; Zilberstein A
    J Biol Chem; 2009 Sep; 284(39):26482-92. PubMed ID: 19635803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis.
    Funck D; Eckard S; Müller G
    BMC Plant Biol; 2010 Apr; 10():70. PubMed ID: 20403182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proline dehydrogenase contributes to pathogen defense in Arabidopsis.
    Cecchini NM; Monteoliva MI; Alvarez ME
    Plant Physiol; 2011 Apr; 155(4):1947-59. PubMed ID: 21311034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis.
    Nakashima K; Satoh R; Kiyosue T; Yamaguchi-Shinozaki K; Shinozaki K
    Plant Physiol; 1998 Dec; 118(4):1233-41. PubMed ID: 9847097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants.
    Peng Z; Lu Q; Verma DP
    Mol Gen Genet; 1996 Dec; 253(3):334-41. PubMed ID: 9003320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis.
    Satoh R; Nakashima K; Seki M; Shinozaki K; Yamaguchi-Shinozaki K
    Plant Physiol; 2002 Oct; 130(2):709-19. PubMed ID: 12376638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive over-expression of rice chymotrypsin protease inhibitor gene OCPI2 results in enhanced growth, salinity and osmotic stress tolerance of the transgenic Arabidopsis plants.
    Tiwari LD; Mittal D; Chandra Mishra R; Grover A
    Plant Physiol Biochem; 2015 Jul; 92():48-55. PubMed ID: 25910649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of the Arabidopsis response regulator ARR18 with bZIP63 mediates the regulation of PROLINE DEHYDROGENASE expression.
    Veerabagu M; Kirchler T; Elgass K; Stadelhofer B; Stahl M; Harter K; Mira-Rodado V; Chaban C
    Mol Plant; 2014 Oct; 7(10):1560-77. PubMed ID: 24948556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana.
    Nanjo T; Kobayashi M; Yoshiba Y; Sanada Y; Wada K; Tsukaya H; Kakubari Y; Yamaguchi-Shinozaki K; Shinozaki K
    Plant J; 1999 Apr; 18(2):185-93. PubMed ID: 10363370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila.
    Kant S; Kant P; Raveh E; Barak S
    Plant Cell Environ; 2006 Jul; 29(7):1220-34. PubMed ID: 17080945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants.
    Stein H; Honig A; Miller G; Erster O; Eilenberg H; Csonka LN; Szabados L; Koncz C; Zilberstein A
    Plant Sci; 2011 Aug; 181(2):140-50. PubMed ID: 21683879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evaluation of salt tolerance in Nicotiana tabacum plants bearing an antisense suppressor of the proline dehydrogenase gene].
    Kolodiazhnaia IaS; Titov SE; Kochetov AV; Komarova ML; Romanova AV; Koval' VS; Shumnyĭ VK
    Genetika; 2006 Feb; 42(2):278-81. PubMed ID: 16583712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana.
    Nanjo T; Kobayashi M; Yoshiba Y; Kakubari Y; Yamaguchi-Shinozaki K; Shinozaki K
    FEBS Lett; 1999 Nov; 461(3):205-10. PubMed ID: 10567698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Context of action of proline dehydrogenase (ProDH) in the Hypersensitive Response of Arabidopsis.
    Monteoliva MI; Rizzi YS; Cecchini NM; Hajirezaei MR; Alvarez ME
    BMC Plant Biol; 2014 Jan; 14():21. PubMed ID: 24410747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress.
    Song SY; Chen Y; Chen J; Dai XY; Zhang WH
    Planta; 2011 Aug; 234(2):331-45. PubMed ID: 21448719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress.
    Kubala S; Wojtyla Ł; Quinet M; Lechowska K; Lutts S; Garnczarska M
    J Plant Physiol; 2015 Jul; 183():1-12. PubMed ID: 26070063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery.
    Dobrá J; Vanková R; Havlová M; Burman AJ; Libus J; Storchová H
    J Plant Physiol; 2011 Sep; 168(13):1588-97. PubMed ID: 21481968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.