BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11788870)

  • 1. Effect of dextran molecular weight on protein stabilization during freeze-drying and storage.
    Sun WQ; Davidson P
    Cryo Letters; 2001; 22(5):285-92. PubMed ID: 11788870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using dextran of different molecular weights to achieve faster freeze-drying and improved storage stability of lactate dehydrogenase.
    Larsen BS; Skytte J; Svagan AJ; Meng-Lund H; Grohganz H; Löbmann K
    Pharm Dev Technol; 2019 Mar; 24(3):323-328. PubMed ID: 29781745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of dextran on thermal properties, product quality attributes, and monoclonal antibody stability in freeze-dried formulations.
    Haeuser C; Goldbach P; Huwyler J; Friess W; Allmendinger A
    Eur J Pharm Biopharm; 2020 Feb; 147():45-56. PubMed ID: 31866444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sucrose/raffinose mass ratios on the stability of co-lyophilized protein during storage above the Tg.
    Davidson P; Sun WQ
    Pharm Res; 2001 Apr; 18(4):474-9. PubMed ID: 11451034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of storage stability of lyophilized actin using combinations of disaccharides and dextran.
    Allison SD; Manning MC; Randolph TW; Middleton K; Davis A; Carpenter JF
    J Pharm Sci; 2000 Feb; 89(2):199-214. PubMed ID: 10688749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of the molecular mobility and protein stability of freeze-dried gamma-globulin formulations on the molecular weight of dextran.
    Yoshioka S; Aso Y; Kojima S
    Pharm Res; 1997 Jun; 14(6):736-41. PubMed ID: 9210190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein stability in the amorphous carbohydrate matrix: relevance to anhydrobiosis.
    Sun WQ; Davidson P; Chan HS
    Biochim Biophys Acta; 1998 Sep; 1425(1):245-54. PubMed ID: 9813351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water sorption and glass transition behaviors of freeze-dried sucrose-dextran mixtures.
    Imamura K; Fukushima A; Sakaura K; Sugita T; Sakiyama T; Nakanishi K
    J Pharm Sci; 2002 Oct; 91(10):2175-81. PubMed ID: 12226844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of supramolecular interactions of dextran-β-cyclodextrin polymers on invertase activity in freeze-dried systems.
    Santagapita PR; Mazzobre MF; Buera MP; Ramirez HL; Brizuela LG; Corti HR; Villalonga R
    Biotechnol Prog; 2015; 31(3):791-8. PubMed ID: 25736897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glass transition-related changes in molecular mobility below glass transition temperature of freeze-dried formulations, as measured by dielectric spectroscopy and solid state nuclear magnetic resonance.
    Yoshioka S; Aso Y
    J Pharm Sci; 2005 Feb; 94(2):275-87. PubMed ID: 15570601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of annealing on the stability of amorphous solids: chemical stability of freeze-dried moxalactam.
    Abdul-Fattah AM; Dellerman KM; Bogner RH; Pikal MJ
    J Pharm Sci; 2007 May; 96(5):1237-50. PubMed ID: 17455341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of additives on the stability of Humicola lanuginosa lipase during freeze-drying and storage in the dried solid.
    Kreilgaard L; Frokjaer S; Flink JM; Randolph TW; Carpenter JF
    J Pharm Sci; 1999 Mar; 88(3):281-90. PubMed ID: 10052984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins.
    Tonnis WF; Mensink MA; de Jager A; van der Voort Maarschalk K; Frijlink HW; Hinrichs WL
    Mol Pharm; 2015 Mar; 12(3):684-94. PubMed ID: 25581526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: glass transition and protein conformation.
    Chang BS; Beauvais RM; Dong A; Carpenter JF
    Arch Biochem Biophys; 1996 Jul; 331(2):249-58. PubMed ID: 8660705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of formulation and process variables on the aggregation of freeze-dried interleukin-6 (IL-6) after lyophilization and on storage.
    Lueckel B; Helk B; Bodmer D; Leuenberger H
    Pharm Dev Technol; 1998 Aug; 3(3):337-46. PubMed ID: 9742554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective effect of dextrans on glucose oxidase denaturation and inactivation.
    Altikatoglu M; Basaran-Elalmis Y
    Artif Cells Blood Substit Immobil Biotechnol; 2012 Aug; 40(4):261-5. PubMed ID: 22279960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lyoprotection of aviscumine with low molecular weight dextrans.
    Gloger O; Witthohn K; Müller BW
    Int J Pharm; 2003 Jul; 260(1):59-68. PubMed ID: 12818810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix.
    Higl B; Kurtmann L; Carlsen CU; Ratjen J; Först P; Skibsted LH; Kulozik U; Risbo J
    Biotechnol Prog; 2007; 23(4):794-800. PubMed ID: 17636886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical stability and protein stability of freeze-dried cakes during storage at elevated temperatures.
    Izutsu K; Yoshioka S; Kojima S
    Pharm Res; 1994 Jul; 11(7):995-9. PubMed ID: 7937561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of drying method and formulation on the physical properties and stability of methionyl human growth hormone in the amorphous solid state.
    Abdul-Fattah AM; Lechuga-Ballesteros D; Kalonia DS; Pikal MJ
    J Pharm Sci; 2008 Jan; 97(1):163-84. PubMed ID: 17722086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.