These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 11788872)
1. Cryopreservation of primary cell cultures of marine invertebrates. Odintsova N; Kiselev K; Sanina N; Kostetsky E Cryo Letters; 2001; 22(5):299-310. PubMed ID: 11788872 [TBL] [Abstract][Full Text] [Related]
2. The fatty acid profile changes in marine invertebrate larval cells during cryopreservation. Odintsova NA; Boroda AV; Velansky PV; Kostetsky EY Cryobiology; 2009 Dec; 59(3):335-43. PubMed ID: 19778531 [TBL] [Abstract][Full Text] [Related]
3. Advances in the cryopreservation of sea-urchin embryos: Potential application in marine water quality assessment. Bellas J; Paredes E Cryobiology; 2011 Jun; 62(3):174-80. PubMed ID: 21338597 [TBL] [Abstract][Full Text] [Related]
5. Freezing tolerance of sea urchin embryonic cells: Differentiation commitment and cytoskeletal disturbances in culture. Odintsova NA; Ageenko NV; Kipryushina YO; Maiorova MA; Boroda AV Cryobiology; 2015 Aug; 71(1):54-63. PubMed ID: 26049089 [TBL] [Abstract][Full Text] [Related]
6. Feasibility of cryopreservation of zebrafish (Danio rerio) primordial germ cells by whole embryo freezing. Higaki S; Mochizuki K; Baba H; Akashi Y; Yamaha E; Katagiri S; Takahashi Y Jpn J Vet Res; 2009 Aug; 57(2):119-28. PubMed ID: 19827747 [TBL] [Abstract][Full Text] [Related]
7. [Embryonic development of the sea urchin after low-temperature preservation]. Gakhova EN; Krasts IV; Naĭdenko TKh; Savel'eva NA; Bessonov BI Ontogenez; 1988; 19(2):175-80. PubMed ID: 3387042 [TBL] [Abstract][Full Text] [Related]
8. Adoption of long-term cultures to evaluate the cryoprotective potential of trehalose for freezing hematopoietic stem cells. Scheinkönig C; Kappicht S; Kolb HJ; Schleuning M Bone Marrow Transplant; 2004 Sep; 34(6):531-6. PubMed ID: 15286692 [TBL] [Abstract][Full Text] [Related]
9. Efficiency of osmotic and chemical treatments to improve the permeation of the cryoprotectant dimethyl sulfoxide to Japanese whiting (Sillago japonica) embryos. Rahman SM; Strüssmann CA; Majhi SK; Suzuki T; Watanabe M Theriogenology; 2011 Jan; 75(2):248-55. PubMed ID: 20961605 [TBL] [Abstract][Full Text] [Related]
10. The potential for cryopreserving larvae of the sea urchin, Evechinus chloroticus. Adams SL; Hessian PA; Mladenov PV Cryobiology; 2006 Feb; 52(1):139-45. PubMed ID: 16321369 [TBL] [Abstract][Full Text] [Related]
11. Video analysis of osmotic cell response during cryopreservation. Spindler R; Rosenhahn B; Hofmann N; Glasmacher B Cryobiology; 2012 Jun; 64(3):250-60. PubMed ID: 22342926 [TBL] [Abstract][Full Text] [Related]
12. Cryopreservation of Taxus chinensis suspension cell cultures. Kim SI; Choi HK; Son JS; Yun JH; Jang MS; Kim HR; Song JY; Kim JH; Choi HJ; Hong SS Cryo Letters; 2001; 22(1):43-50. PubMed ID: 11788843 [TBL] [Abstract][Full Text] [Related]
13. Cryopreservation of primary human hepatocytes: the benefit of trehalose as an additional cryoprotective agent. Katenz E; Vondran FW; Schwartlander R; Pless G; Gong X; Cheng X; Neuhaus P; Sauer IM Liver Transpl; 2007 Jan; 13(1):38-45. PubMed ID: 17154395 [TBL] [Abstract][Full Text] [Related]
14. Cryopreservation of embryos and larvae of the edible sea urchin loxechinus albus (Molina, 1782). Dupré E; Carvajal J Cryobiology; 2019 Feb; 86():84-88. PubMed ID: 30476465 [TBL] [Abstract][Full Text] [Related]
15. Comparative analysis of transcriptional responses to the cryoprotectants, dimethyl sulfoxide and trehalose, which confer tolerance to freeze-thaw stress in Saccharomyces cerevisiae. Momose Y; Matsumoto R; Maruyama A; Yamaoka M Cryobiology; 2010 Jun; 60(3):245-61. PubMed ID: 20067782 [TBL] [Abstract][Full Text] [Related]
16. Cryopreservation of mantle dissociated cells from Haliotis tuberculata (Gastropoda) and postthawed primary cell cultures. Poncet JM; Serpentini A; Boucaud-Camou E; Lebel JM Cryobiology; 2002 Feb; 44(1):38-45. PubMed ID: 12061846 [TBL] [Abstract][Full Text] [Related]
17. [Changes in the lipid composition of embryonic cells of the mussel Mytilus trossulus during cryopreservation]. Korostetskiĭ EIa; Boroda AV; Odintsova NA Biofizika; 2008; 53(4):658-65. PubMed ID: 18819284 [TBL] [Abstract][Full Text] [Related]
18. Cryopreservation of red snapper (Lutjanus argentimaculatus) sperm: effect of cryoprotectants and cooling rates on sperm motility, sperm viability, and fertilization capacity. Vuthiphandchai V; Chomphuthawach S; Nimrat S Theriogenology; 2009 Jul; 72(1):129-38. PubMed ID: 19349072 [TBL] [Abstract][Full Text] [Related]
19. A modified perlite protocol with a mixed dimethyl sulfoxide and trehalose cryoprotectant improves the viability of frozen cultures of ectomycorrhizal basidiomycetes. Sato M; Inaba S; Sukenobe J; Sasaki T; Inoue R; Noguchi M; Nakagiri A Mycologia; 2019; 111(1):161-176. PubMed ID: 30714878 [TBL] [Abstract][Full Text] [Related]
20. Cryopreservation of human hematopoietic cells with membrane stabilizers and bioantioxidants as additives in the conventional freezing medium. Limaye LS; Kale VP J Hematother Stem Cell Res; 2001 Oct; 10(5):709-18. PubMed ID: 11672518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]