These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
495 related articles for article (PubMed ID: 11789920)
21. Effects of elevated CO2 leaf diets on gypsy moth (Lepidoptera: Lymantriidae) respiration rates. Foss AR; Mattson WJ; Trier TM Environ Entomol; 2013 Jun; 42(3):503-14. PubMed ID: 23726059 [TBL] [Abstract][Full Text] [Related]
22. Elevated CO2 interacts with herbivory to alter chlorophyll fluorescence and leaf temperature in Betula papyrifera and Populus tremuloides. Nabity PD; Hillstrom ML; Lindroth RL; DeLucia EH Oecologia; 2012 Aug; 169(4):905-13. PubMed ID: 22358995 [TBL] [Abstract][Full Text] [Related]
23. Host tree species mediate corticolous lichen responses to elevated CO Neufeld HS; Perkins FS Sci Total Environ; 2021 Apr; 764():142875. PubMed ID: 33757245 [TBL] [Abstract][Full Text] [Related]
24. Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Kopper BJ; Lindroth RL Oecologia; 2003 Jan; 134(1):95-103. PubMed ID: 12647186 [TBL] [Abstract][Full Text] [Related]
25. Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone. Pregitzer K; Loya W; Kubiske M; Zak D Oecologia; 2006 Jun; 148(3):503-16. PubMed ID: 16489459 [TBL] [Abstract][Full Text] [Related]
26. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Riikonen J; Lindsberg MM; Holopainen T; Oksanen E; Lappi J; Peltonen P; Vapaavuori E Tree Physiol; 2004 Nov; 24(11):1227-37. PubMed ID: 15339732 [TBL] [Abstract][Full Text] [Related]
27. Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems. Zak DR; Holmes WE; Pregitzer KS Ecology; 2007 Oct; 88(10):2630-9. PubMed ID: 18027765 [TBL] [Abstract][Full Text] [Related]
28. Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Riikonen J; Holopainen T; Oksanen E; Vapaavuori E Tree Physiol; 2005 May; 25(5):621-32. PubMed ID: 15741148 [TBL] [Abstract][Full Text] [Related]
29. Tropospheric O(3) compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO(2). King JS; Kubiske ME; Pregitzer KS; Hendrey GR; McDonald EP; Giardina CP; Quinn VS; Karnosky DF New Phytol; 2005 Dec; 168(3):623-36. PubMed ID: 16313645 [TBL] [Abstract][Full Text] [Related]
30. Effects of elevated carbon dioxide and ozone on foliar proanthocyanidins in Betula platyphylla, Betula ermanii, and Fagus crenata seedlings. Karonen M; Ossipov V; Ossipova S; Kapari L; Loponen J; Matsumura H; Kohno Y; Mikami C; Sakai Y; Izuta T; Pihlaja K J Chem Ecol; 2006 Jul; 32(7):1445-58. PubMed ID: 16718564 [TBL] [Abstract][Full Text] [Related]
31. Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Phillips RL; Zak DR; Holmes WE; White DC Oecologia; 2002 Apr; 131(2):236-244. PubMed ID: 28547691 [TBL] [Abstract][Full Text] [Related]
32. Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. King JS; Pregitzer KS; Zak DR; Holmes WE; Schmidt K Oecologia; 2005 Dec; 146(2):318-28. PubMed ID: 16041614 [TBL] [Abstract][Full Text] [Related]
33. Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction. Darbah JN; Kubiske ME; Nelson N; Oksanen E; Vapaavuori E; Karnosky DF Environ Pollut; 2008 Oct; 155(3):446-52. PubMed ID: 18355950 [TBL] [Abstract][Full Text] [Related]
34. Growth and crown architecture of two aspen genotypes exposed to interacting ozone and carbon dioxide. Dickson RE; Coleman MD; Pechter P; Karnosky D Environ Pollut; 2001; 115(3):319-34. PubMed ID: 11789916 [TBL] [Abstract][Full Text] [Related]
35. Effects of elevated atmospheric CO2 and/or O3 on intra- and interspecific competitive ability of aspen. Kubiske ME; Quinn VS; Marquardt PE; Karnosky DF Plant Biol (Stuttg); 2007 Mar; 9(2):342-55. PubMed ID: 17236101 [TBL] [Abstract][Full Text] [Related]
36. Combination treatment of elevated UVB radiation, CO2 and temperature has little effect on silver birch (Betula pendula) growth and phytochemistry. Lavola A; Nybakken L; Rousi M; Pusenius J; Petrelius M; Kellomäki S; Julkunen-Tiitto R Physiol Plant; 2013 Dec; 149(4):499-514. PubMed ID: 23496144 [TBL] [Abstract][Full Text] [Related]
37. Leaf traits and photosynthetic responses of Betula pendula saplings to a range of ground-level ozone concentrations at a range of nitrogen loads. Harmens H; Hayes F; Sharps K; Mills G; Calatayud V J Plant Physiol; 2017 Apr; 211():42-52. PubMed ID: 28152417 [TBL] [Abstract][Full Text] [Related]
38. Interactive effects of CO2 and O3 on a ponderosa pine plant/litter/soil mesocosm. Olszyk DM; Johnson MG; Phillips DL; Seidler RJ; Tingey DT; Watrud LS Environ Pollut; 2001; 115(3):447-62. PubMed ID: 11789925 [TBL] [Abstract][Full Text] [Related]
39. Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. Kasurinen A; Biasi C; Holopainen T; Rousi M; Mäenpää M; Oksanen E Tree Physiol; 2012 Jun; 32(6):737-51. PubMed ID: 22363070 [TBL] [Abstract][Full Text] [Related]