These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 11789924)
21. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3. Riikonen J; Percy KE; Kivimäenpää M; Kubiske ME; Nelson ND; Vapaavuori E; Karnosky DF Environ Pollut; 2010 Apr; 158(4):1029-35. PubMed ID: 19674822 [TBL] [Abstract][Full Text] [Related]
22. Effects of elevated atmospheric CO2 and/or O3 on intra- and interspecific competitive ability of aspen. Kubiske ME; Quinn VS; Marquardt PE; Karnosky DF Plant Biol (Stuttg); 2007 Mar; 9(2):342-55. PubMed ID: 17236101 [TBL] [Abstract][Full Text] [Related]
23. Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Riikonen J; Holopainen T; Oksanen E; Vapaavuori E Tree Physiol; 2005 May; 25(5):621-32. PubMed ID: 15741148 [TBL] [Abstract][Full Text] [Related]
24. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration. McGrath JM; Karnosky DF; Ainsworth EA Environ Pollut; 2010 Apr; 158(4):1023-8. PubMed ID: 19625117 [TBL] [Abstract][Full Text] [Related]
25. Impacts of greenhouse gases on epicuticular waxes of Populus tremuloides Michx.: results from an open-air exposure and a natural O3 gradient. Mankovská B; Percy KE; Karnosky DF Environ Pollut; 2005 Oct; 137(3):580-6. PubMed ID: 16005768 [TBL] [Abstract][Full Text] [Related]
26. Effects of elevated concentrations of ozone and carbon dioxide on the electrical impedance of leaves of silver birch (Betula pendula) clones. Repo T; Oksanen E; Vapaavuori E Tree Physiol; 2004 Jul; 24(7):833-43. PubMed ID: 15123455 [TBL] [Abstract][Full Text] [Related]
27. Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone. Pregitzer K; Loya W; Kubiske M; Zak D Oecologia; 2006 Jun; 148(3):503-16. PubMed ID: 16489459 [TBL] [Abstract][Full Text] [Related]
28. Increased leaf area expansion of hybrid poplar in elevated CO2. From controlled environments to open-top chambers and to FACE. Taylor G; Ceulemans R; Ferris R; Gardner SD; Shao BY Environ Pollut; 2001; 115(3):463-72. PubMed ID: 11789926 [TBL] [Abstract][Full Text] [Related]
29. Long-term exposure to elevated CO2 and O3 alters aspen foliar chemistry across developmental stages. Couture JJ; Holeski LM; Lindroth RL Plant Cell Environ; 2014 Mar; 37(3):758-65. PubMed ID: 24006844 [TBL] [Abstract][Full Text] [Related]
30. Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence. Kontunen-Soppela S; Parviainen J; Ruhanen H; Brosché M; Keinänen M; Thakur RC; Kolehmainen M; Kangasjärvi J; Oksanen E; Karnosky DF; Vapaavuori E Environ Pollut; 2010 Apr; 158(4):959-68. PubMed ID: 19889492 [TBL] [Abstract][Full Text] [Related]
31. Host tree species mediate corticolous lichen responses to elevated CO Neufeld HS; Perkins FS Sci Total Environ; 2021 Apr; 764():142875. PubMed ID: 33757245 [TBL] [Abstract][Full Text] [Related]
32. Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction. Darbah JN; Kubiske ME; Nelson N; Oksanen E; Vapaavuori E; Karnosky DF Environ Pollut; 2008 Oct; 155(3):446-52. PubMed ID: 18355950 [TBL] [Abstract][Full Text] [Related]
34. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Riikonen J; Lindsberg MM; Holopainen T; Oksanen E; Lappi J; Peltonen P; Vapaavuori E Tree Physiol; 2004 Nov; 24(11):1227-37. PubMed ID: 15339732 [TBL] [Abstract][Full Text] [Related]
35. Genotypic variation in growth and physiological responses of Finnish hybrid aspen (Populus tremuloides x P. tremula) to elevated tropospheric ozone concentration. Oksanen E; Amores G; Kokko H; Amores JM; Kärenlampi L Tree Physiol; 2001 Oct; 21(16):1171-81. PubMed ID: 11600339 [TBL] [Abstract][Full Text] [Related]
36. Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems. Zak DR; Holmes WE; Pregitzer KS Ecology; 2007 Oct; 88(10):2630-9. PubMed ID: 18027765 [TBL] [Abstract][Full Text] [Related]
37. Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Phillips RL; Zak DR; Holmes WE; White DC Oecologia; 2002 Apr; 131(2):236-244. PubMed ID: 28547691 [TBL] [Abstract][Full Text] [Related]
38. Simulating the growth response of aspen to elevated ozone: a mechanistic approach to scaling a leaf-level model of ozone effects on photosynthesis to a complex canopy architecture. Martin MJ; Host GE; Lenz KE; Isebrands JG Environ Pollut; 2001; 115(3):425-36. PubMed ID: 11789923 [TBL] [Abstract][Full Text] [Related]
39. Elevated CO2 interacts with herbivory to alter chlorophyll fluorescence and leaf temperature in Betula papyrifera and Populus tremuloides. Nabity PD; Hillstrom ML; Lindroth RL; DeLucia EH Oecologia; 2012 Aug; 169(4):905-13. PubMed ID: 22358995 [TBL] [Abstract][Full Text] [Related]
40. Can elevated CO2 and ozone shift the genetic composition of aspen (Populus tremuloides) stands? Moran EV; Kubiske ME New Phytol; 2013 Apr; 198(2):466-475. PubMed ID: 23356555 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]