These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 11789996)

  • 1. Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris.
    Miya RK; Firestone MK
    J Environ Qual; 2001; 30(6):1911-8. PubMed ID: 11789996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant enhanced degradation of phenanthrene in the contaminated soil.
    Liao M; Xie XM
    J Environ Sci (China); 2006; 18(3):510-3. PubMed ID: 17294648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial distribution of bacterial communities and phenanthrene degradation in the rhizosphere of Lolium perenne L.
    Corgié SC; Beguiristain T; Leyval C
    Appl Environ Microbiol; 2004 Jun; 70(6):3552-7. PubMed ID: 15184156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioavailability and degradation of phenanthrene in compost amended soils.
    Puglisi E; Cappa F; Fragoulis G; Trevisan M; Del Re AA
    Chemosphere; 2007 Mar; 67(3):548-56. PubMed ID: 17125813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant.
    Jones RK; Sun WH; Tang CS; Robert FM
    Environ Sci Pollut Res Int; 2004; 11(5):340-6. PubMed ID: 15506638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of phenanthrene by the indigenous microbial biomass in a zinc amended soil.
    Wong KW; Toh BA; Ting YP; Obbard JP
    Lett Appl Microbiol; 2005; 40(1):50-5. PubMed ID: 15613002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on phytoremediation of phenanthrene-contaminated soil with alfalfa (Medicago sativa L.)].
    Fan SX; Li PJ; Gong ZQ; He N; Zhang LH; Ren WX; Verkhozina VA
    Huan Jing Ke Xue; 2007 Sep; 28(9):2080-4. PubMed ID: 17990561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil.
    Sun TR; Cang L; Wang QY; Zhou DM; Cheng JM; Xu H
    J Hazard Mater; 2010 Apr; 176(1-3):919-25. PubMed ID: 20005625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for the effect of rhizodeposition on the fate of phenanthrene in aged contaminated soil.
    Kamath R; Schnoor JL; Alvarez PJ
    Environ Sci Technol; 2005 Dec; 39(24):9669-75. PubMed ID: 16475350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Both artificial root exudates and natural Koelreuteria paniculata exudates modify bacterial community structure and enhance phenanthrene biodegradation in contaminated soils.
    Wang J; Chen X; Yan W; Ning C; Gsell T
    Chemosphere; 2021 Jan; 263():128041. PubMed ID: 32854013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat.
    Shahsavari E; Adetutu EM; Taha M; Ball AS
    J Environ Manage; 2015 May; 155():171-6. PubMed ID: 25819570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of digestate and its fractions on mineralization of
    Ibeto C; Omoni V; Fagbohungbe M; Semple K
    Ecotoxicol Environ Saf; 2020 Jun; 195():110482. PubMed ID: 32200149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifts in a Phenanthrene-Degrading Microbial Community are Driven by Carbohydrate Metabolism Selection in a Ryegrass Rhizosphere.
    Jiang L; Luo C; Zhang D; Song M; Mei W; Sun Y; Zhang G
    Environ Sci Technol; 2021 Jan; 55(2):962-973. PubMed ID: 33371686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates.
    Cébron A; Louvel B; Faure P; France-Lanord C; Chen Y; Murrell JC; Leyval C
    Environ Microbiol; 2011 Mar; 13(3):722-36. PubMed ID: 21087382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of simulated rhizodeposition on the relative abundance of polynuclear aromatic hydrocarbon catabolic genes in a contaminated soil.
    Da Silva ML; Kamath R; Alvarez PJ
    Environ Toxicol Chem; 2006 Feb; 25(2):386-91. PubMed ID: 16519298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of small-scale variation in the size and composition of phenanthrene-degrader populations and PAH contaminants in traffic-impacted topsoil.
    Johnsen AR; Styrishave B; Aamand J
    FEMS Microbiol Ecol; 2014 Apr; 88(1):84-93. PubMed ID: 24344982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The coupling of the plant and microbial catabolisms of phenanthrene in the rhizosphere of Medicago sativa.
    Muratova A; Dubrovskaya E; Golubev S; Grinev V; Chernyshova M; Turkovskaya O
    J Plant Physiol; 2015 Sep; 188():1-8. PubMed ID: 26398627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil.
    Oyelami AO; Semple KT
    Environ Sci Process Impacts; 2015 Jul; 17(7):1302-10. PubMed ID: 26067741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between cyclodextrin extraction and biodegradation of phenanthrene in soil.
    Rhodes AH; Dew NM; Semple KT
    Environ Toxicol Chem; 2008 Jul; 27(7):1488-95. PubMed ID: 18260689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cowpea (Vigna unguiculata) root mucilage on microbial community response and capacity for phenanthrene remediation.
    Sun R; Belcher RW; Liang J; Wang L; Thater B; Crowley DE; Wei G
    J Environ Sci (China); 2015 Jul; 33():45-59. PubMed ID: 26141877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.