These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11790008)

  • 1. Hydrologic response and radionuclide transport following fire at semiarid sites.
    Johansen MP; Hakonson TE; Whicker FW; Simanton JR; Stone JJ
    J Environ Qual; 2001; 30(6):2010-7. PubMed ID: 11790008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsed redistribution of a contaminant following forest fire: cesium-137 in runoff.
    Johansen MP; Hakonson TE; Whicker FW; Breshears DD
    J Environ Qual; 2003; 32(6):2150-7. PubMed ID: 14674537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertical migration of 134Cs bearing soil particles in arid soils: implications for plutonium redistribution.
    Whicker RD; Ibrahim SA
    J Environ Radioact; 2006; 88(2):171-88. PubMed ID: 16564117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the long-term (137)Cs distribution in Fukushima after the Fukushima Dai-ichi nuclear power plant accident: a parameter sensitivity analysis.
    Yamaguchi M; Kitamura A; Oda Y; Onishi Y
    J Environ Radioact; 2014 Sep; 135():135-46. PubMed ID: 24836353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using
    Porto P; Callegari G
    Appl Radiat Isot; 2021 Jun; 172():109668. PubMed ID: 33711588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sediment budgets and source determinations using fallout Cesium-137 in a semiarid rangeland watershed, Arizona, USA.
    Ritchie JC; Nearing MA; Rhoton FE
    J Environ Radioact; 2009 Aug; 100(8):637-43. PubMed ID: 19559510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling radiocesium transport from a river catchment based on a physically-based distributed hydrological and sediment erosion model.
    Kinouchi T; Yoshimura K; Omata T
    J Environ Radioact; 2015 Jan; 139():407-415. PubMed ID: 25131841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and retention of 137Cs in sediments at the Hanford Site, Washington.
    McKinley JP; Zeissler CJ; Zachara JM; Serne RJ; Lindstrom RM; Schaef HT; Orr RD
    Environ Sci Technol; 2001 Sep; 35(17):3433-41. PubMed ID: 11563643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of spatial variation of cesium-137 in small catchments.
    van der Perk M; Slávik O; Fulajtár E
    J Environ Qual; 2002; 31(6):1930-9. PubMed ID: 12469843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloid-facilitated transport of cesium in variably saturated Hanford sediments.
    Chen G; Flury M; Harsh JB; Lichtner PC
    Environ Sci Technol; 2005 May; 39(10):3435-42. PubMed ID: 15952347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 137Cs loss via soil erosion from a mountainous headwater catchment in central Japan.
    Fukuyama T; Takenaka C; Onda Y
    Sci Total Environ; 2005 Nov; 350(1-3):238-47. PubMed ID: 16227083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A methodology for the assessment of rehabilitation success of post mining landscapes--sediment and radionuclide transport at the former Nabarlek uranium mine, Northern Territory, Australia.
    Hancock GR; Grabham MK; Martin P; Evans KG; Bollhöfer A
    Sci Total Environ; 2006 Feb; 354(2-3):103-19. PubMed ID: 16242178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibration of a field-portable gamma detector to obtain in situ measurements of the 137Cs inventories of cultivated soils and floodplain sediments.
    He Q; Walling DE
    Appl Radiat Isot; 2000 Apr; 52(4):865-72. PubMed ID: 10800723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal and spatial variation of episodic wind erosion in unburned and burned semiarid shrubland.
    Whicker JJ; Breshears DD; Wasiolek PT; Kirchner TB; Tavani RA; Schoep DA; Rodgers JC
    J Environ Qual; 2002; 31(2):599-612. PubMed ID: 11931452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Floodplain lakes as sinks for sediment-associated contaminants--a new source of proxy hydrological data?
    Winter LT; Foster ID; Charlesworth SM; Lees JA
    Sci Total Environ; 2001 Feb; 266(1-3):187-94. PubMed ID: 11258816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postfire response of flood-regenerating riparian vegetation in a semi-arid landscape.
    Pettit NE; Naiman RJ
    Ecology; 2007 Aug; 88(8):2094-104. PubMed ID: 17824440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrospective search for evidence of the 1957 Windscale fire in NE Ireland using 129I and other long-lived nuclides.
    Gallagher D; McGee EJ; Mitchell PI; Alfimov V; Aldahan A; Possnert G
    Environ Sci Technol; 2005 May; 39(9):2927-35. PubMed ID: 15926535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of 241Am, (239,240)Pu and 137Cs concentrations in soil around rocky flats.
    Hulse SE; Ibrahim SA; Whicker FW; Chapman PL
    Health Phys; 1999 Mar; 76(3):275-87. PubMed ID: 10025653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil redistribution model for undisturbed and cultivated sites based on Chernobyl-derived cesium-137 fallout.
    Hrachowitz M; Maringer FJ; Steineder C; Gerzabek MH
    J Environ Qual; 2005; 34(4):1302-10. PubMed ID: 15998852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of cesium-137 and uranium in contaminated sediments using soil amendments.
    Seaman JC; Meehan T; Bertsch PM
    J Environ Qual; 2001; 30(4):1206-13. PubMed ID: 11476497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.