BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 11790092)

  • 21. Side chains that influence fidelity at the polymerase active site of Escherichia coli DNA polymerase I (Klenow fragment).
    Minnick DT; Bebenek K; Osheroff WP; Turner RM; Astatke M; Liu L; Kunkel TA; Joyce CM
    J Biol Chem; 1999 Jan; 274(5):3067-75. PubMed ID: 9915846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I.
    Bebenek K; Joyce CM; Fitzgerald MP; Kunkel TA
    J Biol Chem; 1990 Aug; 265(23):13878-87. PubMed ID: 2199444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase.
    Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH
    Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discrimination against purine-pyrimidine mispairs in the polymerase active site of DNA polymerase I: a structural explanation.
    Minnick DT; Liu L; Grindley ND; Kunkel TA; Joyce CM
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1194-9. PubMed ID: 11830658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity.
    Kuchta RD; Benkovic P; Benkovic SJ
    Biochemistry; 1988 Sep; 27(18):6716-25. PubMed ID: 3058205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Abasic site recognition mechanism by the Escherichia coli exonuclease III.
    Shida T; Kaneda K; Ogawa T; Sekiguchi J
    Nucleic Acids Symp Ser; 1999; (42):195-6. PubMed ID: 10780446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamic dissection of the polymerizing and editing modes of a DNA polymerase.
    Bailey MF; van der Schans EJ; Millar DP
    J Mol Biol; 2004 Feb; 336(3):673-93. PubMed ID: 15095980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidation of thymine to 5-formyluracil in DNA promotes misincorporation of dGMP and subsequent elongation of a mismatched primer terminus by DNA polymerase.
    Masaoka A; Terato H; Kobayashi M; Ohyama Y; Ide H
    J Biol Chem; 2001 May; 276(19):16501-10. PubMed ID: 11278425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Primer-terminus stabilization at the 3'-5' exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases.
    de Vega M; Lazaro JM; Salas M; Blanco L
    EMBO J; 1996 Mar; 15(5):1182-92. PubMed ID: 8605889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3'-5' Exonucleolytic activity of DNA polymerases: structural features that allow kinetic discrimination between ribo- and deoxyribonucleotide residues.
    Lin TC; Wang CX; Joyce CM; Konigsberg WH
    Biochemistry; 2001 Jul; 40(30):8749-55. PubMed ID: 11467934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal binding to DNA polymerase I, its large fragment, and two 3',5'-exonuclease mutants of the large fragment.
    Mullen GP; Serpersu EH; Ferrin LJ; Loeb LA; Mildvan AS
    J Biol Chem; 1990 Aug; 265(24):14327-34. PubMed ID: 2201684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of the 3'-5' exonuclease activity of Taq DNA polymerase by protein engineering in the active site.
    Park Y; Choi H; Lee DS; Kim Y
    Mol Cells; 1997 Jun; 7(3):419-24. PubMed ID: 9264032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of hydrogen bonds between Escherichia coli DNA polymerase I (Klenow fragment) and the minor groove of DNA by amino acid substitution of the polymerase and atomic substitution of the DNA.
    Spratt TE
    Biochemistry; 2001 Mar; 40(9):2647-52. PubMed ID: 11258875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-molecule microscopy reveals new insights into nucleotide selection by DNA polymerase I.
    Markiewicz RP; Vrtis KB; Rueda D; Romano LJ
    Nucleic Acids Res; 2012 Sep; 40(16):7975-84. PubMed ID: 22669904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of DNA polymerase I Klenow fragment bound to duplex DNA.
    Beese LS; Derbyshire V; Steitz TA
    Science; 1993 Apr; 260(5106):352-5. PubMed ID: 8469987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purification and properties of the 5'-3' exonuclease D190-->a mutant of DNA polymerase I from Streptococcus pneumoniae.
    Amblar M; López P
    Eur J Biochem; 1998 Feb; 252(1):124-32. PubMed ID: 9523721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of single amino acid substitution mutants of cloned Bacillus stearothermophilus DNA polymerase I which lack 5'-->3' exonuclease activity.
    Riggs MG; Tudor S; Sivaram M; McDonough SH
    Biochim Biophys Acta; 1996 Jun; 1307(2):178-86. PubMed ID: 8679703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Melting of a DNA helix terminus within the active site of a DNA polymerase.
    Hochstrasser RA; Carver TE; Sowers LC; Millar DP
    Biochemistry; 1994 Oct; 33(39):11971-9. PubMed ID: 7918416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin on proofreading by Escherichia coli DNA polymerase I (Klenow fragment) in different sequence contexts.
    Kornyushyna O; Burrows CJ
    Biochemistry; 2003 Nov; 42(44):13008-18. PubMed ID: 14596616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA polymerase beta: structure-fidelity relationship from Pre-steady-state kinetic analyses of all possible correct and incorrect base pairs for wild type and R283A mutant.
    Ahn J; Werneburg BG; Tsai MD
    Biochemistry; 1997 Feb; 36(5):1100-7. PubMed ID: 9033400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.