BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11790098)

  • 1. Probing ligand recognition in the decarboxylase antibody 21D8: implications for the catalytic mechanism.
    Hotta K; Wilson IA; Hilvert D
    Biochemistry; 2002 Jan; 41(3):772-9. PubMed ID: 11790098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalysis on the coastline: theozyme, molecular dynamics, and free energy perturbation analysis of antibody 21D8 catalysis of the decarboxylation of 5-nitro-3-carboxybenzisoxazole.
    Ujaque G; Tantillo DJ; Hu Y; Houk KN; Hotta K; Hilvert D
    J Comput Chem; 2003 Jan; 24(1):98-110. PubMed ID: 12483679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalysis of decarboxylation by a preorganized heterogeneous microenvironment: crystal structures of abzyme 21D8.
    Hotta K; Lange H; Tantillo DJ; Houk KN; Hilvert D; Wilson IA
    J Mol Biol; 2000 Oct; 302(5):1213-25. PubMed ID: 11183784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative analysis of the immunological evolution of antibody 28B4.
    Yin J; Mundorff EC; Yang PL; Wendt KU; Hanway D; Stevens RC; Schultz PG
    Biochemistry; 2001 Sep; 40(36):10764-73. PubMed ID: 11535051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of functionally important residues in the pyridoxal-5'-phosphate-dependent catalytic antibody 15A9.
    Mouratou B; Stetefeld J
    Biochemistry; 2004 Jun; 43(21):6612-9. PubMed ID: 15157094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic, stereochemical, and structural effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase.
    Harris TK; Czerwinski RM; Johnson WH; Legler PM; Abeygunawardana C; Massiah MA; Stivers JT; Whitman CP; Mildvan AS
    Biochemistry; 1999 Sep; 38(38):12343-57. PubMed ID: 10493802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of hapten binding and catalytic determinants in a family of catalytic antibodies.
    Ulrich HD; Schultz PG
    J Mol Biol; 1998 Jan; 275(1):95-111. PubMed ID: 9451442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a catalytic antibody with a serine protease active site.
    Zhou GW; Guo J; Huang W; Fletterick RJ; Scanlan TS
    Science; 1994 Aug; 265(5175):1059-64. PubMed ID: 8066444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for antibody catalysis of a cationic cyclization reaction.
    Zhu X; Heine A; Monnat F; Houk KN; Janda KD; Wilson IA
    J Mol Biol; 2003 May; 329(1):69-83. PubMed ID: 12742019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis.
    Oda M; Ito N; Tsumuraya T; Suzuki K; Sakakura M; Fujii I
    J Mol Biol; 2007 May; 369(1):198-209. PubMed ID: 17428500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational effects in biological catalysis: an antibody-catalyzed oxy-cope rearrangement.
    Mundorff EC; Hanson MA; Varvak A; Ulrich H; Schultz PG; Stevens RC
    Biochemistry; 2000 Feb; 39(4):627-32. PubMed ID: 10651626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic antibody model and mutagenesis implicate arginine in transition-state stabilization.
    Roberts VA; Stewart J; Benkovic SJ; Getzoff ED
    J Mol Biol; 1994 Jan; 235(3):1098-116. PubMed ID: 8289310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the complex of a catalytic antibody Fab fragment with a transition state analog: structural similarities in esterase-like catalytic antibodies.
    Charbonnier JB; Carpenter E; Gigant B; Golinelli-Pimpaneau B; Eshhar Z; Green BS; Knossow M
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11721-5. PubMed ID: 8524836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism of enantioselective proton transfer to carbon in catalytic antibody 14D9.
    Zheng L; Baumann U; Reymond JL
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3387-92. PubMed ID: 14988504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positional ordering of reacting groups contributes significantly to the efficiency of proton transfer at an antibody active site.
    Seebeck FP; Hilvert D
    J Am Chem Soc; 2005 Feb; 127(4):1307-12. PubMed ID: 15669871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution.
    Kristensen O; Vassylyev DG; Tanaka F; Morikawa K; Fujii I
    J Mol Biol; 1998 Aug; 281(3):501-11. PubMed ID: 9698565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms of improvement of hydrolytic antibody 6D9 by site-directed mutagenesis.
    Takahashi-Ando N; Shimazaki K; Kakinuma H; Fujii I; Nishi Y
    J Biochem; 2006 Oct; 140(4):509-15. PubMed ID: 16921165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of a catalytic antibody: an arginine and a histidine residue play key roles.
    Stewart JD; Roberts VA; Thomas NR; Getzoff ED; Benkovic SJ
    Biochemistry; 1994 Mar; 33(8):1994-2003. PubMed ID: 8117656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural origins of efficient proton abstraction from carbon by a catalytic antibody.
    Debler EW; Ito S; Seebeck FP; Heine A; Hilvert D; Wilson IA
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):4984-9. PubMed ID: 15788533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.