BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 11790299)

  • 21. Dynamic interactions between splicing snRNPs, coiled bodies and nucleoli revealed using snRNP protein fusions to the green fluorescent protein.
    Sleeman J; Lyon CE; Platani M; Kreivi JP; Lamond AI
    Exp Cell Res; 1998 Sep; 243(2):290-304. PubMed ID: 9743589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunocytochemical localization of nucleophosmin and RH-II/Gu protein in nucleoli of HeLa cells after treatment with actinomycin D.
    Smetana K; Busch R; Chan PK; Smetana K; Busch H
    Acta Histochem; 2001 Jul; 103(3):325-33. PubMed ID: 11482378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interferon action: nucleolar and nucleoplasmic localization of the interferon-inducible 72-kD protein that is encoded by the Ifi 204 gene from the gene 200 cluster.
    Choubey D; Lengyel P
    J Cell Biol; 1992 Mar; 116(6):1333-41. PubMed ID: 1541632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PML protein association with specific nucleolar structures differs in normal, tumor and senescent human cells.
    Janderová-Rossmeislová L; Nováková Z; Vlasáková J; Philimonenko V; Hozák P; Hodný Z
    J Struct Biol; 2007 Jul; 159(1):56-70. PubMed ID: 17428679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway.
    Sleeman JE; Lamond AI
    Curr Biol; 1999 Oct; 9(19):1065-74. PubMed ID: 10531003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localization of α-Dystrobrevin in Cajal Bodies and Nucleoli: A New Role for α-Dystrobrevin in the Structure/Stability of the Nucleolus.
    Hernández-Ibarra JA; Laredo-Cisneros MS; Mondragón-González R; Santamaría-Guayasamín N; Cisneros B
    J Cell Biochem; 2015 Dec; 116(12):2755-65. PubMed ID: 25959029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SWI/SNF chromatin-remodeling complexes function in noncoding RNA-dependent assembly of nuclear bodies.
    Kawaguchi T; Tanigawa A; Naganuma T; Ohkawa Y; Souquere S; Pierron G; Hirose T
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4304-9. PubMed ID: 25831520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organization and function of paraspeckles.
    Wang Y; Chen LL
    Essays Biochem; 2020 Dec; 64(6):875-882. PubMed ID: 32830222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of fluorescent protein tags to study nuclear organization of the spliceosomal machinery in transiently transformed living plant cells.
    Lorković ZJ; Hilscher J; Barta A
    Mol Biol Cell; 2004 Jul; 15(7):3233-43. PubMed ID: 15133128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of protein dephosphorylation results in the accumulation of splicing snRNPs and coiled bodies within the nucleolus.
    Lyon CE; Bohmann K; Sleeman J; Lamond AI
    Exp Cell Res; 1997 Jan; 230(1):84-93. PubMed ID: 9013710
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whole-genome screening identifies proteins localized to distinct nuclear bodies.
    Fong KW; Li Y; Wang W; Ma W; Li K; Qi RZ; Liu D; Songyang Z; Chen J
    J Cell Biol; 2013 Oct; 203(1):149-64. PubMed ID: 24127217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs.
    Mao YS; Sunwoo H; Zhang B; Spector DL
    Nat Cell Biol; 2011 Jan; 13(1):95-101. PubMed ID: 21170033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The proteins of intra-nuclear bodies: a data-driven analysis of sequence, interaction and expression.
    Mohamad N; Bodén M
    BMC Syst Biol; 2010 Apr; 4():44. PubMed ID: 20388198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo kinetics of Cajal body components.
    Dundr M; Hebert MD; Karpova TS; Stanek D; Xu H; Shpargel KB; Meier UT; Neugebauer KM; Matera AG; Misteli T
    J Cell Biol; 2004 Mar; 164(6):831-42. PubMed ID: 15024031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Paraspeckle subnuclear bodies depend on dynamic heterodimerisation of DBHS RNA-binding proteins via their structured domains.
    Lee PW; Marshall AC; Knott GJ; Kobelke S; Martelotto L; Cho E; McMillan PJ; Lee M; Bond CS; Fox AH
    J Biol Chem; 2022 Nov; 298(11):102563. PubMed ID: 36209820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Paraspeckles.
    Fox AH; Lamond AI
    Cold Spring Harb Perspect Biol; 2010 Jul; 2(7):a000687. PubMed ID: 20573717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles.
    Wei X; Somanathan S; Samarabandu J; Berezney R
    J Cell Biol; 1999 Aug; 146(3):543-58. PubMed ID: 10444064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dissection of nuclear paraspeckles: towards understanding the emerging world of the RNP milieu.
    Nakagawa S; Yamazaki T; Hirose T
    Open Biol; 2018 Oct; 8(10):. PubMed ID: 30355755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a pipeline for automated, high-throughput analysis of paraspeckle proteins reveals specific roles for importin α proteins.
    Major AT; Miyamoto Y; Lo CY; Jans DA; Loveland KL
    Sci Rep; 2017 Feb; 7():43323. PubMed ID: 28240251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A role for the GSG domain in localizing Sam68 to novel nuclear structures in cancer cell lines.
    Chen T; Boisvert FM; Bazett-Jones DP; Richard S
    Mol Biol Cell; 1999 Sep; 10(9):3015-33. PubMed ID: 10473643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.