BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 11790749)

  • 21. Role of galK and galM in galactose metabolism by Streptococcus thermophilus.
    Vaillancourt K; Bédard N; Bart C; Tessier M; Robitaille G; Turgeon N; Frenette M; Moineau S; Vadeboncoeur C
    Appl Environ Microbiol; 2008 Feb; 74(4):1264-7. PubMed ID: 18065633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lactose metabolism in Lactobacillus bulgaricus: analysis of the primary structure and expression of the genes involved.
    Leong-Morgenthaler P; Zwahlen MC; Hottinger H
    J Bacteriol; 1991 Mar; 173(6):1951-7. PubMed ID: 1705929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems.
    Poolman B; Royer TJ; Mainzer SE; Schmidt BF
    J Bacteriol; 1989 Jan; 171(1):244-53. PubMed ID: 2644191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathways for lactose/galactose catabolism by Streptococcus salivarius.
    Chen YY; Betzenhauser MJ; Snyder JA; Burne RA
    FEMS Microbiol Lett; 2002 Mar; 209(1):75-9. PubMed ID: 12007657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unusual organization for lactose and galactose gene clusters in Lactobacillus helveticus.
    Fortina MG; Ricci G; Mora D; Guglielmetti S; Manachini PL
    Appl Environ Microbiol; 2003 Jun; 69(6):3238-43. PubMed ID: 12788721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of lactose transport, beta-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvate-dependent phosphotransferase system sugar.
    van den Bogaard PT; Kleerebezem M; Kuipers OP; de Vos WM
    J Bacteriol; 2000 Nov; 182(21):5982-9. PubMed ID: 11029416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-level inhibition of galK expression by Spot 42: Degradation of mRNA mK2 and enhanced transcription termination before the galK gene.
    Wang X; Ji SC; Jeon HJ; Lee Y; Lim HM
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7581-6. PubMed ID: 26045496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel Streptococcus infantarius subsp. infantarius variants harboring lactose metabolism genes homologous to Streptococcus thermophilus.
    Jans C; Gerber A; Bugnard J; Njage PM; Lacroix C; Meile L
    Food Microbiol; 2012 Aug; 31(1):33-42. PubMed ID: 22475940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rare cases of galactose metabolic disorders: identification of more than two mutations per patient.
    Schulpis KH; Thodi G; Chatzidaki M; Iakovou K; Molou E; Dotsikas Y; Loukas YL
    J Pediatr Endocrinol Metab; 2017 Oct; 30(10):1119-1120. PubMed ID: 28902631
    [No Abstract]   [Full Text] [Related]  

  • 30. Galactose metabolism by Streptococcus mutans.
    Abranches J; Chen YY; Burne RA
    Appl Environ Microbiol; 2004 Oct; 70(10):6047-52. PubMed ID: 15466549
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The lactose transporter in Leuconostoc lactis is a new member of the LacS subfamily of galactoside-pentose-hexuronide translocators.
    Vaughan EE; David S; de Vos WM
    Appl Environ Microbiol; 1996 May; 62(5):1574-82. PubMed ID: 8633855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of human UDP-glucose pyrophosphorylase rescues galactose-1-phosphate uridyltransferase-deficient yeast.
    Lai K; Elsas LJ
    Biochem Biophys Res Commun; 2000 May; 271(2):392-400. PubMed ID: 10799308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli.
    Bouffard GG; Rudd KE; Adhya SL
    J Mol Biol; 1994 Dec; 244(3):269-78. PubMed ID: 7966338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular analysis of the lac operon encoding the binding-protein-dependent lactose transport system and beta-galactosidase in Agrobacterium radiobacter.
    Williams SG; Greenwood JA; Jones CW
    Mol Microbiol; 1992 Jul; 6(13):1755-68. PubMed ID: 1630315
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic loci for coaggregation receptor polysaccharide biosynthesis in Streptococcus gordonii 38.
    Xu DQ; Thompson J; Cisar JO
    J Bacteriol; 2003 Sep; 185(18):5419-30. PubMed ID: 12949094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a gene cluster for the formation of extracellular polysaccharide precursors in the chemolithoautotroph Acidithiobacillus ferrooxidans.
    Barreto M; Jedlicki E; Holmes DS
    Appl Environ Microbiol; 2005 Jun; 71(6):2902-9. PubMed ID: 15932984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning and characterization of the galactokinase gene from Streptococcus thermophilus.
    Mustapha A; Hutkins RW; Zirnstein GW
    J Dairy Sci; 1995 May; 78(5):989-97. PubMed ID: 7622733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon.
    Fornwald JA; Schmidt FJ; Adams CW; Rosenberg M; Brawner ME
    Proc Natl Acad Sci U S A; 1987 Apr; 84(8):2130-4. PubMed ID: 3031664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unidirectional reconstitution into detergent-destabilized liposomes of the purified lactose transport system of Streptococcus thermophilus.
    Knol J; Veenhoff L; Liang WJ; Henderson PJ; Leblanc G; Poolman B
    J Biol Chem; 1996 Jun; 271(26):15358-66. PubMed ID: 8662938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Escherichia coli gal operon proteins made after prophage lambda induction.
    Merril CR; Gottesman ME; Adhya SL
    J Bacteriol; 1981 Sep; 147(3):875-87. PubMed ID: 6268612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.