BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 11790762)

  • 21. The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli.
    Patzer SI; Hantke K
    J Biol Chem; 2000 Aug; 275(32):24321-32. PubMed ID: 10816566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter.
    Lin YF; Liang HM; Yang SY; Boch A; Clemens S; Chen CC; Wu JF; Huang JL; Yeh KC
    New Phytol; 2009; 182(2):392-404. PubMed ID: 19210716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A
    Liu H; Wei Z; Li J; Liu X; Zhu L; Wang Y; Wang T; Li C; Shen X
    Appl Environ Microbiol; 2023 Jul; 89(7):e0024023. PubMed ID: 37338394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function.
    Mitra B; Sharma R
    Biochemistry; 2001 Jun; 40(25):7694-9. PubMed ID: 11412123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli.
    Patzer SI; Hantke K
    Mol Microbiol; 1998 Jun; 28(6):1199-210. PubMed ID: 9680209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The interactions of iron with other divalent metals in the intestinal tract of a freshwater teleost, rainbow trout (Oncorhynchusmykiss).
    Kwong RW; Niyogi S
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Nov; 150(4):442-9. PubMed ID: 19584005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective transport of divalent cations by transition metal permeases: the Alcaligenes eutrophus HoxN and the Rhodococcus rhodochrous NhlF.
    Degen O; Kobayashi M; Shimizu S; Eitinger T
    Arch Microbiol; 1999 Feb; 171(3):139-45. PubMed ID: 10201093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interrelationships between the utilization of magnesium and the uptake of other bivalent cations by bacteria.
    Webb M
    Biochim Biophys Acta; 1970 Nov; 222(2):428-39. PubMed ID: 4992522
    [No Abstract]   [Full Text] [Related]  

  • 29. Genes encoding specific nickel transport systems flank the chromosomal urease locus of pathogenic yersiniae.
    Sebbane F; Mandrand-Berthelot MA; Simonet M
    J Bacteriol; 2002 Oct; 184(20):5706-13. PubMed ID: 12270829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple metal binding domains enhance the Zn(II) selectivity of the divalent metal ion transporter AztA.
    Liu T; Reyes-Caballero H; Li C; Scott RA; Giedroc DP
    Biochemistry; 2007 Oct; 46(39):11057-68. PubMed ID: 17824670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli.
    Binet MR; Poole RK
    FEBS Lett; 2000 May; 473(1):67-70. PubMed ID: 10802061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The homologous Arabidopsis MRS2/MGT/CorA-type Mg
    Ishijima S; Manabe Y; Shinkawa Y; Hotta A; Tokumasu A; Ida M; Sagami I
    Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2184-2191. PubMed ID: 30409514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacillus subtilis CPx-type ATPases: characterization of Cd, Zn, Co and Cu efflux systems.
    Gaballa A; Helmann JD
    Biometals; 2003 Dec; 16(4):497-505. PubMed ID: 12779235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative study on Ni(2+)-affinity transport of nickel/cobalt permeases (NiCoTs) and the potential of recombinant Escherichia coli for Ni(2+) bioaccumulation.
    Deng X; He J; He N
    Bioresour Technol; 2013 Feb; 130():69-74. PubMed ID: 23306112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut.
    Behnsen J; Zhi H; Aron AT; Subramanian V; Santus W; Lee MH; Gerner RR; Petras D; Liu JZ; Green KD; Price SL; Camacho J; Hillman H; Tjokrosurjo J; Montaldo NP; Hoover EM; Treacy-Abarca S; Gilston BA; Skaar EP; Chazin WJ; Garneau-Tsodikova S; Lawrenz MB; Perry RD; Nuccio SP; Dorrestein PC; Raffatellu M
    Nat Commun; 2021 Dec; 12(1):7016. PubMed ID: 34853318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PcoE--a metal sponge expressed to the periplasm of copper resistance Escherichia coli. Implication of its function role in copper resistance.
    Zimmermann M; Udagedara SR; Sze CM; Ryan TM; Howlett GJ; Xiao Z; Wedd AG
    J Inorg Biochem; 2012 Oct; 115():186-97. PubMed ID: 22658755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli.
    Nies DH
    J Bacteriol; 1995 May; 177(10):2707-12. PubMed ID: 7751279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal ion interaction with urease and UreD-urease apoproteins.
    Park IS; Hausinger RP
    Biochemistry; 1996 Apr; 35(16):5345-52. PubMed ID: 8611523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli.
    Grosse C; Scherer J; Koch D; Otto M; Taudte N; Grass G
    Mol Microbiol; 2006 Oct; 62(1):120-31. PubMed ID: 16987175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cadmium removal from aqueous solution by gene-modified Escherichia coli JM109.
    Deng X; Yi XE; Liu G
    J Hazard Mater; 2007 Jan; 139(2):340-4. PubMed ID: 16890348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.