These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 11790762)

  • 41. Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response.
    Ríos G; Cabedo M; Rull B; Yenush L; Serrano R; Mulet JM
    FEMS Yeast Res; 2013 Feb; 13(1):97-106. PubMed ID: 23106982
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of YiaX2 in L-ascorbate transport in Klebsiella pneumoniae 13882.
    Campos E; Aguilera L; Giménez R; Aguilar J; Baldoma L; Badia J
    Can J Microbiol; 2009 Nov; 55(11):1319-22. PubMed ID: 19940941
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The lactose permease of Escherichia coli: a paradigm for membrane transport proteins.
    Kaback HR
    Biochim Biophys Acta; 1992 Jul; 1101(2):210-3. PubMed ID: 1633187
    [No Abstract]   [Full Text] [Related]  

  • 44. The ZIP Transporter Family Member OsZIP9 Contributes To Root Zinc Uptake in Rice under Zinc-Limited Conditions.
    Huang S; Sasaki A; Yamaji N; Okada H; Mitani-Ueno N; Ma JF
    Plant Physiol; 2020 Jul; 183(3):1224-1234. PubMed ID: 32371522
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protecting the Achilles heel: three FolE_I-type GTP-cyclohydrolases needed for full growth of metal-resistant
    Schulz V; Galea D; Herzberg M; Nies DH
    J Bacteriol; 2024 Feb; 206(2):e0039523. PubMed ID: 38226602
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport.
    Banakar R; Alvarez Fernández Á; Abadía J; Capell T; Christou P
    Plant Biotechnol J; 2017 Apr; 15(4):423-432. PubMed ID: 27633505
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pb(II)-translocating P-type ATPases.
    Rensing C; Sun Y; Mitra B; Rosen BP
    J Biol Chem; 1998 Dec; 273(49):32614-7. PubMed ID: 9830000
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Content of copper, zinc, cadmium and nickel in muscles and in tumors].
    GORODYSKII VL; VESELAIA IV; ROSTOVTSEVA OH
    Vopr Med Khim; 1956; 2(1):17-8. PubMed ID: 13352857
    [No Abstract]   [Full Text] [Related]  

  • 49. The ZntA-like NpunR4017 plays a key role in maintaining homeostatic levels of zinc in Nostoc punctiforme.
    Hudek L; Bräu L; Michalczyk AA; Neilan BA; Meeks JC; Ackland ML
    Appl Microbiol Biotechnol; 2015 Dec; 99(24):10559-74. PubMed ID: 26290176
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Binding protein-dependent ABC transport system for glycerol 3-phosphate of Escherichia coli.
    Boos W
    Methods Enzymol; 1998; 292():40-51. PubMed ID: 9711545
    [No Abstract]   [Full Text] [Related]  

  • 51. Expression and mutagenesis of ZntA, a zinc-transporting P-type ATPase from Escherichia coli.
    Okkeri J; Haltia T
    Biochemistry; 1999 Oct; 38(42):14109-16. PubMed ID: 10529259
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+.
    Guffanti AA; Wei Y; Rood SV; Krulwich TA
    Mol Microbiol; 2002 Jul; 45(1):145-53. PubMed ID: 12100555
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase.
    Beard SJ; Hashim R; Membrillo-Hernández J; Hughes MN; Poole RK
    Mol Microbiol; 1997 Sep; 25(5):883-91. PubMed ID: 9364914
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Uptake and degradation of EDTA by Escherichia coli.
    Suzuki Y; Koyama N
    Biodegradation; 2009 Feb; 20(1):39-44. PubMed ID: 18470656
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polyamine uptake systems in Escherichia coli.
    Igarashi K; Ito K; Kashiwagi K
    Res Microbiol; 2001; 152(3-4):271-8. PubMed ID: 11421274
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contributions of five secondary metal uptake systems to metal homeostasis of Cupriavidus metallidurans CH34.
    Kirsten A; Herzberg M; Voigt A; Seravalli J; Grass G; Scherer J; Nies DH
    J Bacteriol; 2011 Sep; 193(18):4652-63. PubMed ID: 21742896
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fidelity of metal insertion into hydrogenases.
    Magalon A; Blokesch M; Zehelein E; Böck A
    FEBS Lett; 2001 Jun; 499(1-2):73-6. PubMed ID: 11418115
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure and Function of Cu(I)- and Zn(II)-ATPases.
    Sitsel O; Grønberg C; Autzen HE; Wang K; Meloni G; Nissen P; Gourdon P
    Biochemistry; 2015 Sep; 54(37):5673-83. PubMed ID: 26132333
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Factors that Affect the Content of Cadmium, Nickel, Copper and Zinc in Tissues of the Knee Joint.
    Roczniak W; Brodziak-Dopierała B; Cipora E; Jakóbik-Kolon A; Kluczka J; Babuśka-Roczniak M
    Biol Trace Elem Res; 2017 Aug; 178(2):201-209. PubMed ID: 28070864
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enterochelin acquisition in Campylobacter coli: characterization of components of a binding-protein-dependent transport system.
    Richardson PT; Park SF
    Microbiology (Reading); 1995 Dec; 141 ( Pt 12)():3181-91. PubMed ID: 8574410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.