These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 11791221)

  • 1. Minimum spanning trees for gene expression data clustering.
    Xu Y; Olman V; Xu D
    Genome Inform; 2001; 12():24-33. PubMed ID: 11791221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees.
    Xu Y; Olman V; Xu D
    Bioinformatics; 2002 Apr; 18(4):536-45. PubMed ID: 12016051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TA-clustering: cluster analysis of gene expression profiles through Temporal Abstractions.
    Sacchi L; Bellazzi R; Larizza C; Magni P; Curk T; Petrovic U; Zupan B
    Int J Med Inform; 2005 Aug; 74(7-8):505-17. PubMed ID: 15941669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding explained groups of time-course gene expression profiles with predictive clustering trees.
    Slavkov I; Gjorgjioski V; Struyf J; Dzeroski S
    Mol Biosyst; 2010 Apr; 6(4):729-40. PubMed ID: 20237651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of informative clusters from hierarchical cluster tree with gene classes.
    Toronen P
    BMC Bioinformatics; 2004 Mar; 5():32. PubMed ID: 15043761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering microarray gene expression data using weighted Chinese restaurant process.
    Qin ZS
    Bioinformatics; 2006 Aug; 22(16):1988-97. PubMed ID: 16766561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of regulatory binding sites using minimum spanning trees.
    Olman V; Xu D; Xu Y
    Pac Symp Biocomput; 2003; ():327-38. PubMed ID: 12603039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possibilistic approach for biclustering microarray data.
    Cano C; Adarve L; López J; Blanco A
    Comput Biol Med; 2007 Oct; 37(10):1426-36. PubMed ID: 17346690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to decide which are the most pertinent overly-represented features during gene set enrichment analysis.
    Barriot R; Sherman DJ; Dutour I
    BMC Bioinformatics; 2007 Sep; 8():332. PubMed ID: 17848190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast iterative gene clustering based on information theoretic criteria for selecting the cluster structure.
    Giurcăneanu CD; Tăbuş I; Astola J; Ollila J; Vihinen M
    J Comput Biol; 2004; 11(4):660-82. PubMed ID: 15579237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses.
    Bertoni A; Valentini G
    Artif Intell Med; 2006 Jun; 37(2):85-109. PubMed ID: 16720093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of correlated gene clusters by multiple graph comparison.
    Nakaya A; Goto S; Kanehisa M
    Genome Inform; 2001; 12():44-53. PubMed ID: 11791223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical and computational framework for quantitative comparison and integration of large-scale gene expression data.
    Hart CE; Sharenbroich L; Bornstein BJ; Trout D; King B; Mjolsness E; Wold BJ
    Nucleic Acids Res; 2005; 33(8):2580-94. PubMed ID: 15886390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computing the maximum similarity bi-clusters of gene expression data.
    Liu X; Wang L
    Bioinformatics; 2007 Jan; 23(1):50-6. PubMed ID: 17090578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering gene expression data using adaptive double self-organizing map.
    Ressom H; Wang D; Natarajan P
    Physiol Genomics; 2003 Jun; 14(1):35-46. PubMed ID: 12672901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constraint-based knowledge discovery from SAGE data.
    Klémal J; Blachon S; Soulet A; Crémilleux B; Gandrillon O
    In Silico Biol; 2008; 8(2):157-75. PubMed ID: 18928203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering of change patterns using Fourier coefficients.
    Kim J; Kim H
    Bioinformatics; 2008 Jan; 24(2):184-91. PubMed ID: 18025003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of a Gibbs sampler method for model-based clustering of gene expression data.
    Joshi A; Van de Peer Y; Michoel T
    Bioinformatics; 2008 Jan; 24(2):176-83. PubMed ID: 18033794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The clustering of regression models method with applications in gene expression data.
    Qin LX; Self SG
    Biometrics; 2006 Jun; 62(2):526-33. PubMed ID: 16918917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.