These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 11791229)
1. Prediction of subcellular localizations using amino acid composition and order. Fujiwara Y; Asogawa M Genome Inform; 2001; 12():103-12. PubMed ID: 11791229 [TBL] [Abstract][Full Text] [Related]
2. Protein subcellular localization prediction using artificial intelligence technology. Nair R; Rost B Methods Mol Biol; 2008; 484():435-63. PubMed ID: 18592195 [TBL] [Abstract][Full Text] [Related]
3. Prediction of subcellular localization of eukaryotic proteins using position-specific profiles and neural network with weighted inputs. Zou L; Wang Z; Huang J J Genet Genomics; 2007 Dec; 34(12):1080-7. PubMed ID: 18155620 [TBL] [Abstract][Full Text] [Related]
4. Prediction of ubiquitin proteins using artificial neural networks, hidden markov model and support vector machines. Jaiswal K In Silico Biol; 2007; 7(6):559-68. PubMed ID: 18467768 [TBL] [Abstract][Full Text] [Related]
5. MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Höglund A; Dönnes P; Blum T; Adolph HW; Kohlbacher O Bioinformatics; 2006 May; 22(10):1158-65. PubMed ID: 16428265 [TBL] [Abstract][Full Text] [Related]
6. SubCellProt: predicting protein subcellular localization using machine learning approaches. Garg P; Sharma V; Chaudhari P; Roy N In Silico Biol; 2009; 9(1-2):35-44. PubMed ID: 19537160 [TBL] [Abstract][Full Text] [Related]
7. Prediction of protein secondary structure content using amino acid composition and evolutionary information. Lee S; Lee BC; Kim D Proteins; 2006 Mar; 62(4):1107-14. PubMed ID: 16345074 [TBL] [Abstract][Full Text] [Related]
8. Protein location prediction using atomic composition and global features of the amino acid sequence. Cherian BS; Nair AS Biochem Biophys Res Commun; 2010 Jan; 391(4):1670-4. PubMed ID: 20036215 [TBL] [Abstract][Full Text] [Related]
9. Using pseudo amino acid composition to predict protein subcellular location: approached with amino acid composition distribution. Shi JY; Zhang SW; Pan Q; Zhou GP Amino Acids; 2008 Aug; 35(2):321-7. PubMed ID: 18209947 [TBL] [Abstract][Full Text] [Related]
10. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. Tusnády GE; Simon I J Mol Biol; 1998 Oct; 283(2):489-506. PubMed ID: 9769220 [TBL] [Abstract][Full Text] [Related]
11. A novel method for predicting protein subcellular localization based on pseudo amino acid composition. Ma J; Gu H BMB Rep; 2010 Oct; 43(10):670-6. PubMed ID: 21034529 [TBL] [Abstract][Full Text] [Related]
12. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search. Garg A; Raghava GP In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201 [TBL] [Abstract][Full Text] [Related]
13. Predicting subcellular localization of proteins by hybridizing functional domain composition and pseudo-amino acid composition. Chou KC; Cai YD J Cell Biochem; 2004 Apr; 91(6):1197-203. PubMed ID: 15048874 [TBL] [Abstract][Full Text] [Related]
14. AAIndexLoc: predicting subcellular localization of proteins based on a new representation of sequences using amino acid indices. Tantoso E; Li KB Amino Acids; 2008 Aug; 35(2):345-53. PubMed ID: 18163182 [TBL] [Abstract][Full Text] [Related]
15. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein. Raghava GP; Han JH BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999 [TBL] [Abstract][Full Text] [Related]
16. Detecting and sorting targeting peptides with neural networks and support vector machines. Hawkins J; Bodén M J Bioinform Comput Biol; 2006 Feb; 4(1):1-18. PubMed ID: 16568539 [TBL] [Abstract][Full Text] [Related]