These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 11791235)

  • 1. Optimally separating sequences.
    Myers G
    Genome Inform; 2001; 12():165-74. PubMed ID: 11791235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A space-efficient algorithm for the constrained pairwise sequence alignment problem.
    He D; Arslan AN
    Genome Inform; 2005; 16(2):237-46. PubMed ID: 16901106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic discovery of sub-molecular sequence domains in multi-aligned sequences: a dynamic programming algorithm for multiple alignment segmentation.
    Xing EP; Wolf DM; Dubchak I; Spengler S; Zorn M; Muchnik I; Kulikowski C
    J Theor Biol; 2001 Sep; 212(2):129-39. PubMed ID: 11531380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast, optimal alignment of three sequences using linear gap costs.
    Powell DR; Allison L; Dix TI
    J Theor Biol; 2000 Dec; 207(3):325-36. PubMed ID: 11082303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An enhanced branch-and-bound algorithm for a partitioning problem.
    Brusco MJ
    Br J Math Stat Psychol; 2003 May; 56(Pt 1):83-92. PubMed ID: 12803823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fast algorithm for the optimal alignment of three strings.
    Allison L
    J Theor Biol; 1993 Sep; 164(2):261-9. PubMed ID: 8246519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S-Metric calculation by considering dominated hypervolume as Klee's measure problem.
    Beume N
    Evol Comput; 2009; 17(4):477-92. PubMed ID: 19916778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved algorithm for statistical alignment of sequences related by a star tree.
    Miklós I
    Bull Math Biol; 2002 Jul; 64(4):771-9. PubMed ID: 12216420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-queue branch-and-bound algorithm for anytime optimal search with biological applications.
    Lathrop RH; Sazhin A; Sun Y; Steffin N; Irani SS
    Genome Inform; 2001; 12():73-82. PubMed ID: 11791226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MotifCut: regulatory motifs finding with maximum density subgraphs.
    Fratkin E; Naughton BT; Brutlag DL; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e150-7. PubMed ID: 16873465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic diversity within seconds.
    Minh BQ; Klaere S; von Haeseler A
    Syst Biol; 2006 Oct; 55(5):769-73. PubMed ID: 17060198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representation in stochastic search for phylogenetic tree reconstruction.
    Weber G; Ohno-Machado L; Shieber S
    J Biomed Inform; 2006 Feb; 39(1):43-50. PubMed ID: 16359929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for aligning RNA secondary structures and its application to RNA motif detection.
    Liu J; Wang JT; Hu J; Tian B
    BMC Bioinformatics; 2005 Apr; 6():89. PubMed ID: 15817128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast branch & bound algorithms for optimal feature selection.
    Somol P; Pudil P; Kittler J
    IEEE Trans Pattern Anal Mach Intell; 2004 Jul; 26(7):900-12. PubMed ID: 18579948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic supermatrix analysis of GenBank sequences from 2228 papilionoid legumes.
    McMahon MM; Sanderson MJ
    Syst Biol; 2006 Oct; 55(5):818-36. PubMed ID: 17060202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Informative priors based on transcription factor structural class improve de novo motif discovery.
    Narlikar L; Gordân R; Ohler U; Hartemink AJ
    Bioinformatics; 2006 Jul; 22(14):e384-92. PubMed ID: 16873497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding motifs from all sequences with and without binding sites.
    Leung HC; Chin FY
    Bioinformatics; 2006 Sep; 22(18):2217-23. PubMed ID: 16870937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing the efficiency of searches for the maximum likelihood tree in a phylogenetic analysis of up to 150 nucleotide sequences.
    Morrison DA
    Syst Biol; 2007 Dec; 56(6):988-1010. PubMed ID: 18066931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a better solution to the shortest common supersequence problem: the deposition and reduction algorithm.
    Ning K; Leong HW
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S12. PubMed ID: 17217504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.