BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 11791560)

  • 1. Chemiluminescence of luminol in the presence of iron(II) and oxygen: oxidation mechanism and implications for its analytical use.
    Rose AL; Waite TD
    Anal Chem; 2001 Dec; 73(24):5909-20. PubMed ID: 11791560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter.
    Rose AL; Waite TD
    Environ Sci Technol; 2002 Feb; 36(3):433-44. PubMed ID: 11871559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron-Natural Organic Matter Interactions.
    Jiang C; Garg S; Waite TD
    Environ Sci Technol; 2015 Dec; 49(24):14076-84. PubMed ID: 26579728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and kinetics of dark iron redox transformations in previously photolyzed acidic natural organic matter solutions.
    Garg S; Ito H; Rose AL; Waite TD
    Environ Sci Technol; 2013 Feb; 47(4):1861-9. PubMed ID: 23331166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of heterogeneous precipitation in determining the nature of products formed on oxidation of Fe(II) in seawater containing natural organic matter.
    Bligh MW; Waite TD
    Environ Sci Technol; 2010 Sep; 44(17):6667-73. PubMed ID: 20690668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of allochthonous and autochthonous dissolved organic matter in Fe(II) oxidation: A case study in Shizugawa Bay watershed, Japan.
    Lee YP; Fujii M; Kikuchi T; Natsuike M; Ito H; Watanabe T; Yoshimura C
    Chemosphere; 2017 Aug; 180():221-228. PubMed ID: 28410502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MIL-53(Fe) MOF-mediated catalytic chemiluminescence for sensitive detection of glucose.
    Yi X; Dong W; Zhang X; Xie J; Huang Y
    Anal Bioanal Chem; 2016 Dec; 408(30):8805-8812. PubMed ID: 27314849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peroxynitrite-induced luminol chemiluminescence.
    Radi R; Cosgrove TP; Beckman JS; Freeman BA
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):51-7. PubMed ID: 8382481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Natural Organic Matter on H2O2-Mediated Oxidation of Fe(II) in Coastal Seawaters.
    Miller CJ; Vincent Lee SM; Rose AL; Waite TD
    Environ Sci Technol; 2012 Oct; 46(20):11078-85. PubMed ID: 22985332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic considerations on the electrogenerated luminescence of luminol at platinum electrode in the presence of hydrogen peroxide and oxygen.
    Pastore P; Favaro G; Gallina A; Antiochia R
    Ann Chim; 2002 Mar; 92(3):271-80. PubMed ID: 12025511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron redox transformations in continuously photolyzed acidic solutions containing natural organic matter: kinetic and mechanistic insights.
    Garg S; Jiang C; Miller CJ; Rose AL; Waite TD
    Environ Sci Technol; 2013 Aug; 47(16):9190-7. PubMed ID: 23879362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enhancement of iron-dependent luminol peroxidation by 2,2'-dipyridyl and nitrilotriacetate.
    Henley R; Worwood M
    J Biolumin Chemilumin; 1994; 9(4):245-50. PubMed ID: 7985525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chelate complex-enhanced luminol system for selective determination of Co(II), Fe(II) and Cr(III).
    Kim KM; Kim YH; Oh SH; Lee SH
    Luminescence; 2013; 28(3):372-7. PubMed ID: 22715144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of natural organic matter on iron uptake by the freshwater cyanobacterium Microcystis aeruginosa.
    Fujii M; Dang TC; Bligh MW; Rose AL; Waite TD
    Environ Sci Technol; 2014; 48(1):365-74. PubMed ID: 24261844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen and superoxide-mediated redox kinetics of iron complexed by humic substances in coastal seawater.
    Fujii M; Rose AL; Waite TD; Omura T
    Environ Sci Technol; 2010 Dec; 44(24):9337-42. PubMed ID: 21077605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands.
    Wang Z; Bush RT; Liu J
    Chemosphere; 2013 Nov; 93(9):1936-41. PubMed ID: 23880239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation of iron redox kinetics and its relation with molecular composition of standard humic substances at circumneutral pH.
    Lee YP; Fujii M; Kikuchi T; Terao K; Yoshimura C
    PLoS One; 2017; 12(4):e0176484. PubMed ID: 28453538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of nitrate and nitrite in freshwaters using flow-injection with luminol chemiluminescence detection.
    Yaqoob M; Folgado Biot B; Nabi A; Worsfold PJ
    Luminescence; 2012; 27(5):419-25. PubMed ID: 23044772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transition metal enhanced luminol chemiluminescence in the presence of a chelator.
    Parejo I; Petrakis C; Kefalas P
    J Pharmacol Toxicol Methods; 2000; 43(3):183-90. PubMed ID: 11257482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Luminol-enhanced chemiluminescence of rabbit polymorphonuclear leukocytes: the nature of oxidants that directly induce luminol oxidation].
    Roshchupkin DI; Belakina NS; Murina MA
    Biofizika; 2006; 51(1):99-107. PubMed ID: 16521559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.