BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11791917)

  • 1. Synthesis of blood compatible polyamide block copolymers.
    Singhal JP; Ray AR
    Biomaterials; 2002 Feb; 23(4):1139-45. PubMed ID: 11791917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of poly(amido-amine)s belonging to two different homologous series.
    Tanzi MC; Tieghi G; Botto P; Barozzi C; Cardillo P
    Biomaterials; 1984 Nov; 5(6):357-61. PubMed ID: 6525395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of microstructure of poly(propylene-oxide)-segmented polyamides on platelet adhesion.
    Yui N; Sanui K; Ogata N; Kataoka K; Okano T; Sakurai Y
    J Biomed Mater Res; 1986 Sep; 20(7):929-43. PubMed ID: 3760009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent bonding of heparin to a vinyl copolymer for biomedical applications.
    Marconi W; Benvenuti F; Piozzi A
    Biomaterials; 1997 Jun; 18(12):885-90. PubMed ID: 9184753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant-Oil-Based Polyamides and Polyurethanes: Toward Sustainable Nitrogen-Containing Thermoplastic Materials.
    Meier MAR
    Macromol Rapid Commun; 2019 Jan; 40(1):e1800524. PubMed ID: 30179281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heparinizable graft copolymers from chlorosulphonated polyethylene with poly(amido-amine) segments.
    Tanzi MC; Barozzi C; Tieghi G; Ferrara R; Casini G; Tempesti F
    Biomaterials; 1985 Jul; 6(4):273-6. PubMed ID: 4052541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of poly(dimethylsiloxane)-poly(ethylene oxide)-heparin CBABC type block copolymers.
    Piao AZ; Nojiri C; Park KD; Jacobs H; Feijen J; Kim SW
    J Biomater Sci Polym Ed; 1990; 1(4):299-313. PubMed ID: 2279007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradable and biocompatible poly(N,N-dimethylaminoethyl methacrylate-co-caprolactone)s as DNA transfection agents.
    Zhang Y; Aigner A; Agarwal S
    Macromol Biosci; 2013 Sep; 13(9):1267-75. PubMed ID: 23682036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of hairpin polyamides with an alpha-substituted-gamma-aminobutyric acid as a 5'-TG-3' reader in DNA minor groove.
    Zhang W; Bando T; Sugiyama H
    J Am Chem Soc; 2006 Jul; 128(27):8766-76. PubMed ID: 16819870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyamide/PEG Blends as Biocompatible Biomaterials for the Convenient Regulation of Cell Adhesion and Growth.
    Winnacker M; Beringer AJG; Gronauer TF; Güngör HH; Reinschlüssel L; Rieger B; Sieber SA
    Macromol Rapid Commun; 2019 Jun; 40(12):e1900091. PubMed ID: 30969001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automated synthesis of DNA-binding Py-Im polyamides using a triphosgene coupling strategy.
    Fang L; Yao G; Pan Z; Wu C; Wang HS; Burley GA; Su W
    Org Lett; 2015 Jan; 17(1):158-61. PubMed ID: 25496317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of polyamide oligomers based on 14-amino-3,6,9, 12-tetraoxatetradecanoic acid.
    Dhawan R; Kadijk MG; Joikinen TJ; Feng M; Ansell SM
    Bioconjug Chem; 2000; 11(1):14-21. PubMed ID: 10639080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization, and blood compatibility of polyamidoamines copolymers.
    Dey RK; Ray AR
    Biomaterials; 2003 Aug; 24(18):2985-93. PubMed ID: 12895570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A convenient method for the synthesis of DNA-recognizing polyamides in solution.
    Xiao J; Yuan G; Huang W; Chan AS; Lee KL
    J Org Chem; 2000 Sep; 65(18):5506-13. PubMed ID: 10970288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel biomaterial: poly(dimethylsiloxane)-polyamide multiblock copolymer I. Synthesis and evaluation of blood compatibility.
    Furuzono T; Yashima E; Kishida A; Maruyama I; Matsumoto T; Akashi M
    J Biomater Sci Polym Ed; 1993; 5(1-2):89-98. PubMed ID: 8297834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochromic Response Capability Enhancement with Pentiptycene-Incorporated Intrinsic Porous Polyamide Films.
    Chiu YW; Tan WS; Yang JS; Pai MH; Liou GS
    Macromol Rapid Commun; 2020 Jun; 41(12):e2000186. PubMed ID: 32400908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and physicochemical characterization of a hydrophilic polyurethane able to bind heparin.
    Marconi W; Martinelli A; Piozzi A; Zane D
    Biomaterials; 1992; 13(7):432-8. PubMed ID: 1633217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heparinized polyurethane surface through ionic bonding of heparin.
    Barbucci R; Magnani A; Albanese A; Tempesti F
    Int J Artif Organs; 1991 Aug; 14(8):499-507. PubMed ID: 1937939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of PEG-PDMAEMA Block Copolymer Architecture on Polyelectrolyte Complex Formation with Heparin.
    Välimäki S; Khakalo A; Ora A; Johansson LS; Rojas OJ; Kostiainen MA
    Biomacromolecules; 2016 Sep; 17(9):2891-900. PubMed ID: 27477891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water contact angles and hysteresis of polyamide surfaces.
    Extrand CW
    J Colloid Interface Sci; 2002 Apr; 248(1):136-42. PubMed ID: 16290514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.