BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 11792566)

  • 21. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow.
    Hughes DE; MacDonald BR; Russell RG; Gowen M
    J Clin Invest; 1989 Jun; 83(6):1930-5. PubMed ID: 2524504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogen-containing bisphosphonate mechanism of action.
    Reszka AA; Rodan GA
    Mini Rev Med Chem; 2004 Sep; 4(7):711-9. PubMed ID: 15379639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro.
    Fisher JE; Rogers MJ; Halasy JM; Luckman SP; Hughes DE; Masarachia PJ; Wesolowski G; Russell RG; Rodan GA; Reszka AA
    Proc Natl Acad Sci U S A; 1999 Jan; 96(1):133-8. PubMed ID: 9874784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of osteoclastogenesis after bisphosphonate therapy discontinuation: an in vitro approach.
    Bradaschia-Correa V; Ribeiro-Santos GC; de Faria LP; Rezende-Teixeira P; Arana-Chavez VE
    J Mol Histol; 2022 Aug; 53(4):669-677. PubMed ID: 35701706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bisphosphonates: from the laboratory to the clinic and back again.
    Russell RG; Rogers MJ
    Bone; 1999 Jul; 25(1):97-106. PubMed ID: 10423031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo effects of bisphosphonates on the osteoclast mevalonate pathway.
    Fisher JE; Rodan GA; Reszka AA
    Endocrinology; 2000 Dec; 141(12):4793-6. PubMed ID: 11108295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bisphosphonate mechanism of action.
    Reszka AA; Rodan GA
    Curr Rheumatol Rep; 2003 Feb; 5(1):65-74. PubMed ID: 12590887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Jaw bone marrow-derived osteoclast precursors internalize more bisphosphonate than long-bone marrow precursors.
    Vermeer JA; Jansen ID; Marthi M; Coxon FP; McKenna CE; Sun S; de Vries TJ; Everts V
    Bone; 2013 Nov; 57(1):242-51. PubMed ID: 23962725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular and molecular mechanisms of action of bisphosphonates.
    Rogers MJ; Gordon S; Benford HL; Coxon FP; Luckman SP; Monkkonen J; Frith JC
    Cancer; 2000 Jun; 88(12 Suppl):2961-78. PubMed ID: 10898340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bisphosphonates act on rat bone resorption through the mediation of osteoblasts.
    Sahni M; Guenther HL; Fleisch H; Collin P; Martin TJ
    J Clin Invest; 1993 May; 91(5):2004-11. PubMed ID: 8486770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of dimeric glucocorticoid receptors in osteoclast progenitors potentiates RANKL induced mature osteoclast bone resorbing activity.
    Conaway HH; Henning P; Lie A; Tuckermann J; Lerner UH
    Bone; 2016 Dec; 93():43-54. PubMed ID: 27596806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Colony stimulating factor-1 plays a role in osteoclast formation and function in bone resorption induced by parathyroid hormone and parathyroid hormone-related protein.
    Weir EC; Lowik CW; Paliwal I; Insogna KL
    J Bone Miner Res; 1996 Oct; 11(10):1474-81. PubMed ID: 8889847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytokine-induced nitric oxide inhibits bone resorption by inducing apoptosis of osteoclast progenitors and suppressing osteoclast activity.
    van't Hof RJ; Ralston SH
    J Bone Miner Res; 1997 Nov; 12(11):1797-804. PubMed ID: 9383684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bisphosphonates, specific inhibitors of osteoclast function and a class of drugs for osteoporosis therapy.
    Li B; Ling Chau JF; Wang X; Leong WF
    J Cell Biochem; 2011 May; 112(5):1229-42. PubMed ID: 21465521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of tissue type plasminogen activator (tPA) on osteoclastic resorption in embryonic mouse long bone explants: a possible role for the growth factor domain of tPA.
    Hoekman K; Löwik CW; van de Ruit M; Bijvoet OL; Verheijen JH; Papapoulos SE
    Bone Miner; 1992 Apr; 17(1):1-13. PubMed ID: 1533805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells.
    Coxon FP; Thompson K; Roelofs AJ; Ebetino FH; Rogers MJ
    Bone; 2008 May; 42(5):848-60. PubMed ID: 18325866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trapidil, a platelet-derived growth factor antagonist, inhibits osteoclastogenesis by down-regulating NFATc1 and suppresses bone loss in mice.
    Kim SD; Kim HN; Lee JH; Jin WJ; Hwang SJ; Kim HH; Ha H; Lee ZH
    Biochem Pharmacol; 2013 Sep; 86(6):782-90. PubMed ID: 23928189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of action of bisphosphonates.
    Reszka AA; Rodan GA
    Curr Osteoporos Rep; 2003 Sep; 1(2):45-52. PubMed ID: 16036064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of osteoclast mediated bone resorption--rationale for the design of new therapeutics.
    Väänänen K
    Adv Drug Deliv Rev; 2005 May; 57(7):959-71. PubMed ID: 15876398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro comparison of clodronate, pamidronate and zoledronic acid effects on rat osteoclasts and human stem cell-derived osteoblasts.
    Kellinsalmi M; Mönkkönen H; Mönkkönen J; Leskelä HV; Parikka V; Hämäläinen M; Lehenkari P
    Basic Clin Pharmacol Toxicol; 2005 Dec; 97(6):382-91. PubMed ID: 16364054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.