BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 11792641)

  • 21. Angiotensin II and neurohumoral control of the renal medullary circulation.
    Evans RG; Head GA; Eppel GA; Burke SL; Rajapakse NW
    Clin Exp Pharmacol Physiol; 2010 Feb; 37(2):e58-69. PubMed ID: 19566838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-density lipoprotein antagonizes oxidized low-density lipoprotein by suppressing oxygen free-radical formation and preserving nitric oxide bioactivity.
    Lee CM; Chien CT; Chang PY; Hsieh MY; Jui HY; Liau CS; Hsu SM; Lee YT
    Atherosclerosis; 2005 Dec; 183(2):251-8. PubMed ID: 16098532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple factors contribute to acetylcholine-induced renal afferent arteriolar vasodilation during myogenic and norepinephrine- and KCl-induced vasoconstriction. Studies in the isolated perfused hydronephrotic kidney.
    Hayashi K; Loutzenhiser R; Epstein M; Suzuki H; Saruta T
    Circ Res; 1994 Nov; 75(5):821-8. PubMed ID: 7923627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of renal NO production in the regulation of medullary blood flow.
    Cowley AW; Mori T; Mattson D; Zou AP
    Am J Physiol Regul Integr Comp Physiol; 2003 Jun; 284(6):R1355-69. PubMed ID: 12736168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The renal microcirculation in sepsis.
    Ergin B; Kapucu A; Demirci-Tansel C; Ince C
    Nephrol Dial Transplant; 2015 Feb; 30(2):169-77. PubMed ID: 24848133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of renal microcirculation.
    Steinhausen M; Endlich K
    Nephrol Dial Transplant; 1995; 10(9):1559-64. PubMed ID: 8559469
    [No Abstract]   [Full Text] [Related]  

  • 28. Renal vascular dysfunction precedes the development of renal damage in the hypertensive Fawn-Hooded rat.
    Ochodnický P; Henning RH; Buikema HJ; de Zeeuw D; Provoost AP; van Dokkum RP
    Am J Physiol Renal Physiol; 2010 Mar; 298(3):F625-33. PubMed ID: 20007352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Renal dysfunction is associated with a reduced contribution of nitric oxide and enhanced vasoconstriction after a congenital renal mass reduction in sheep.
    Lankadeva YR; Singh RR; Moritz KM; Parkington HC; Denton KM; Tare M
    Circulation; 2015 Jan; 131(3):280-8. PubMed ID: 25369804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. alpha(2)-adrenergic receptor-mediated increase in NO production buffers renal medullary vasoconstriction.
    Zou AP; Cowley AW
    Am J Physiol Regul Integr Comp Physiol; 2000 Sep; 279(3):R769-77. PubMed ID: 10956233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension.
    Palm F; Cederberg J; Hansell P; Liss P; Carlsson PO
    Diabetologia; 2003 Aug; 46(8):1153-60. PubMed ID: 12879251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of sphingosine-1-phosphate-mediated vasoconstriction of rat afferent arterioles.
    Guan Z; Wang F; Cui X; Inscho EW
    Acta Physiol (Oxf); 2018 Feb; 222(2):. PubMed ID: 28640982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The fibrinolytic system attenuates vascular tone: effects of tissue plasminogen activator (tPA) and aminocaproic acid on renal microcirculation.
    Heyman SN; Hanna Z; Nassar T; Shina A; Akkawi S; Goldfarb M; Rosen S; Higazi AA
    Br J Pharmacol; 2004 Mar; 141(6):971-8. PubMed ID: 14993107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The regulation of blood perfusion in the renal cortex and medulla by reactive oxygen species and nitric oxide in the anaesthetised rat.
    Ahmeda AF; Johns EJ
    Acta Physiol (Oxf); 2012 Mar; 204(3):443-50. PubMed ID: 21827636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a putative microvascular oxygen sensor.
    Harder DR; Narayanan J; Birks EK; Liard JF; Imig JD; Lombard JH; Lange AR; Roman RJ
    Circ Res; 1996 Jul; 79(1):54-61. PubMed ID: 8925569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of nitric oxide in regulation of the renal medulla in normal and hypertensive kidneys.
    Pallone TL; Mattson DL
    Curr Opin Nephrol Hypertens; 2002 Jan; 11(1):93-8. PubMed ID: 11753093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactive oxygen species: influence on cerebral vascular tone.
    Faraci FM
    J Appl Physiol (1985); 2006 Feb; 100(2):739-43. PubMed ID: 16421281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of renal blood flow and vascular tone by neuronal nitric oxide synthase-derived nitric oxide.
    Toda N; Okamura T
    J Vasc Res; 2011; 48(1):1-10. PubMed ID: 20606466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypoxia and Endothelial Dysfunction in Autosomal-Dominant Polycystic Kidney Disease.
    Theodorakopoulou M; Raptis V; Loutradis C; Sarafidis P
    Semin Nephrol; 2019 Nov; 39(6):599-612. PubMed ID: 31836042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.