These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11792643)

  • 21. Age-dependent bone loss and recovery during hindlimb unloading and subsequent reloading in rats.
    Cunningham HC; West DWD; Baehr LM; Tarke FD; Baar K; Bodine SC; Christiansen BA
    BMC Musculoskelet Disord; 2018 Jul; 19(1):223. PubMed ID: 30021585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitric oxide synthase inhibition reduces muscle inflammation and necrosis in modified muscle use.
    Pizza FX; Hernandez IJ; Tidball JG
    J Leukoc Biol; 1998 Oct; 64(4):427-33. PubMed ID: 9766622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Macrophage activation and muscle remodeling at myotendinous junctions after modifications in muscle loading.
    St Pierre BA; Tidball JG
    Am J Pathol; 1994 Dec; 145(6):1463-71. PubMed ID: 7992849
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading.
    Kawada S; Tachi C; Ishii N
    J Muscle Res Cell Motil; 2001; 22(8):627-33. PubMed ID: 12222823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. β-Hydroxy-β-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy.
    Alway SE; Pereira SL; Edens NK; Hao Y; Bennett BT
    Exp Gerontol; 2013 Sep; 48(9):973-84. PubMed ID: 23832076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Factors modulating recovery rate after intermittent tetanic fatigue in atrophic soleus].
    Li H; Jiao B; Yu ZB
    Sheng Li Xue Bao; 2007 Jun; 59(3):369-74. PubMed ID: 17579795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of mechanical load on functional recovery after muscle reloading.
    Pottle D; Gosselin LE
    Med Sci Sports Exerc; 2000 Dec; 32(12):2012-7. PubMed ID: 11128844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exercise and suspension hypokinesia-induced alterations in mechanical properties of rat fast and slow-twitch skeletal muscles.
    Ertunc M; Atalay A; Yildirim M; Onur R
    Acta Physiol Hung; 2010 Sep; 97(3):316-25. PubMed ID: 20843770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Akt-dependent and Akt-independent pathways are involved in protein synthesis activation during reloading of disused soleus muscle.
    Mirzoev TM; Tyganov SA; Shenkman BS
    Muscle Nerve; 2017 Mar; 55(3):393-399. PubMed ID: 27367189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptation to lengthening contractions is independent of voluntary muscle recruitment but relies on inflammation.
    Lapointe BM; Frémont P; Côté CH
    Am J Physiol Regul Integr Comp Physiol; 2002 Jan; 282(1):R323-9. PubMed ID: 11742855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A physiological level of clenbuterol does not prevent atrophy or loss of force in skeletal muscle of old rats.
    Chen KD; Alway SE
    J Appl Physiol (1985); 2000 Aug; 89(2):606-12. PubMed ID: 10926644
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Downhill running in rats: influence on neutrophils, macrophages, and MyoD+ cells in skeletal muscle.
    Tsivitse SK; McLoughlin TJ; Peterson JM; Mylona E; McGregor SJ; Pizza FX
    Eur J Appl Physiol; 2003 Nov; 90(5-6):633-8. PubMed ID: 12955516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ovarian hormone status and skeletal muscle inflammation during recovery from disuse in rats.
    McClung JM; Davis JM; Carson JA
    Exp Physiol; 2007 Jan; 92(1):219-32. PubMed ID: 16990367
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanics and fatigability of the rat soleus muscle during early reloading.
    Lee K; Lee YS; Lee M; Yamashita M; Choi I
    Yonsei Med J; 2004 Aug; 45(4):690-702. PubMed ID: 15344212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regrowth after skeletal muscle atrophy is impaired in aged rats, despite similar responses in signaling pathways.
    White JR; Confides AL; Moore-Reed S; Hoch JM; Dupont-Versteegden EE
    Exp Gerontol; 2015 Apr; 64():17-32. PubMed ID: 25681639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of Connective Tissue Area Increases by Initial Impact With High-Intensity Exercise After Reloading in Rat Soleus Muscle.
    Tanaka S; Inaoka PT; Madokoro S; Yamazaki T
    Am J Phys Med Rehabil; 2023 Jul; 102(7):588-596. PubMed ID: 36730065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional reprogramming and ultrastructure during atrophy and recovery of mouse soleus muscle.
    Däpp C; Schmutz S; Hoppeler H; Flück M
    Physiol Genomics; 2004 Dec; 20(1):97-107. PubMed ID: 15479860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics: studies in hind limb unloaded rats.
    Basso N; Jia Y; Bellows CG; Heersche JN
    Bone; 2005 Sep; 37(3):370-8. PubMed ID: 16005699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ciliary neurotrophic factor prevents unweighting-induced functional changes in rat soleus muscle.
    Fraysse B; Guillet C; Huchet-Cadiou C; Camerino DC; Gascan H; Léoty C
    J Appl Physiol (1985); 2000 May; 88(5):1623-30. PubMed ID: 10797122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers.
    Feng HZ; Chen X; Malek MH; Jin JP
    Am J Physiol Cell Physiol; 2016 Jan; 310(1):C27-40. PubMed ID: 26447205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.