These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 11792673)
1. Dynamics of cerebral blood flow regulation explained using a lumped parameter model. Olufsen MS; Nadim A; Lipsitz LA Am J Physiol Regul Integr Comp Physiol; 2002 Feb; 282(2):R611-22. PubMed ID: 11792673 [TBL] [Abstract][Full Text] [Related]
2. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study. Ursino M; Giulioni M; Lodi CA J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121 [TBL] [Abstract][Full Text] [Related]
3. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. Olufsen MS; Ottesen JT; Tran HT; Ellwein LM; Lipsitz LA; Novak V J Appl Physiol (1985); 2005 Oct; 99(4):1523-37. PubMed ID: 15860687 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the autoregulatory mechanisms between middle cerebral artery and ophthalmic artery after thigh cuff deflation in healthy subjects. Kolodjaschna J; Berisha F; Lung S; Schima H; Polska E; Schmetterer L Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):636-40. PubMed ID: 15671293 [TBL] [Abstract][Full Text] [Related]
5. Estimation and identification of parameters in a lumped cerebrovascular model. Pope SR; Ellwein LM; Zapata CL; Novak V; Kelley CT; Olufsen MS Math Biosci Eng; 2009 Jan; 6(1):93-115. PubMed ID: 19292510 [TBL] [Abstract][Full Text] [Related]
6. Dynamic regulation of middle cerebral artery blood flow velocity in aging and hypertension. Lipsitz LA; Mukai S; Hamner J; Gagnon M; Babikian V Stroke; 2000 Aug; 31(8):1897-903. PubMed ID: 10926954 [TBL] [Abstract][Full Text] [Related]
7. Cerebral pressure-flow relations in hypertensive elderly humans: transfer gain in different frequency domains. Serrador JM; Sorond FA; Vyas M; Gagnon M; Iloputaife ID; Lipsitz LA J Appl Physiol (1985); 2005 Jan; 98(1):151-9. PubMed ID: 15361517 [TBL] [Abstract][Full Text] [Related]
8. A Coupled Lumped-Parameter and Distributed Network Model for Cerebral Pulse-Wave Hemodynamics. Ryu J; Hu X; Shadden SC J Biomech Eng; 2015 Oct; 137(10):101009. PubMed ID: 26287937 [TBL] [Abstract][Full Text] [Related]
10. Cerebrovascular regulation during transient hypotension and hypertension in humans. Tzeng YC; Willie CK; Atkinson G; Lucas SJ; Wong A; Ainslie PN Hypertension; 2010 Aug; 56(2):268-73. PubMed ID: 20547971 [TBL] [Abstract][Full Text] [Related]
11. Assessment of dynamic cerebral autoregulation and cerebrovascular CO2 reactivity in ageing by measurements of cerebral blood flow and cortical oxygenation. Oudegeest-Sander MH; van Beek AH; Abbink K; Olde Rikkert MG; Hopman MT; Claassen JA Exp Physiol; 2014 Mar; 99(3):586-98. PubMed ID: 24363382 [TBL] [Abstract][Full Text] [Related]
12. Contribution of arterial Windkessel in low-frequency cerebral hemodynamics during transient changes in blood pressure. Chan GS; Ainslie PN; Willie CK; Taylor CE; Atkinson G; Jones H; Lovell NH; Tzeng YC J Appl Physiol (1985); 2011 Apr; 110(4):917-25. PubMed ID: 21292835 [TBL] [Abstract][Full Text] [Related]
13. Fundamental relationships between blood pressure and cerebral blood flow in humans. Tzeng YC; MacRae BA; Ainslie PN; Chan GS J Appl Physiol (1985); 2014 Nov; 117(9):1037-48. PubMed ID: 25170067 [TBL] [Abstract][Full Text] [Related]
14. Transfer function analysis of dynamic cerebral autoregulation in humans. Zhang R; Zuckerman JH; Giller CA; Levine BD Am J Physiol; 1998 Jan; 274(1 Pt 2):H233-41. PubMed ID: 9458872 [TBL] [Abstract][Full Text] [Related]
15. Modeling cerebral blood flow and regulation. Aoi M; Gremaud P; Tran HT; Novak V; Olufsen MS Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5470-3. PubMed ID: 19964684 [TBL] [Abstract][Full Text] [Related]
16. Cerebrovascular mechanisms in neurocardiogenic syncope with and without postural tachycardia syndrome. Diehl RR; Linden D; Chalkiadaki A; Diehl A J Auton Nerv Syst; 1999 May; 76(2-3):159-66. PubMed ID: 10412840 [TBL] [Abstract][Full Text] [Related]
17. Cerebral vasoconstriction during head-upright tilt-induced vasovagal syncope. A paradoxic and unexpected response. Grubb BP; Gerard G; Roush K; Temesy-Armos P; Montford P; Elliott L; Hahn H; Brewster P Circulation; 1991 Sep; 84(3):1157-64. PubMed ID: 1884446 [TBL] [Abstract][Full Text] [Related]
18. Predicting cerebral blood flow response to orthostatic stress from resting dynamics: effects of healthy aging. Narayanan K; Collins JJ; Hamner J; Mukai S; Lipsitz LA Am J Physiol Regul Integr Comp Physiol; 2001 Sep; 281(3):R716-22. PubMed ID: 11506984 [TBL] [Abstract][Full Text] [Related]
19. Cerebral versus systemic hemodynamics during graded orthostatic stress in humans. Levine BD; Giller CA; Lane LD; Buckey JC; Blomqvist CG Circulation; 1994 Jul; 90(1):298-306. PubMed ID: 8026012 [TBL] [Abstract][Full Text] [Related]
20. A lumped parameter model of cerebral blood flow control combining cerebral autoregulation and neurovascular coupling. Spronck B; Martens EG; Gommer ED; van de Vosse FN Am J Physiol Heart Circ Physiol; 2012 Nov; 303(9):H1143-53. PubMed ID: 22777421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]