BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 11792763)

  • 21. Detection of small degree of nonuniformity in dialysate flow in hollow-fiber dialyzer using proton magnetic resonance imaging.
    Osuga T; Obata T; Ikehira H
    Magn Reson Imaging; 2004 Apr; 22(3):417-20. PubMed ID: 15062938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increasing dialysate flow rate increases dialyzer urea clearance and dialysis efficiency: an in vivo study.
    Azar AT
    Saudi J Kidney Dis Transpl; 2009 Nov; 20(6):1023-9. PubMed ID: 19861865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. The Hemodialysis (HEMO) Study.
    Leypoldt JK; Cheung AK; Agodoa LY; Daugirdas JT; Greene T; Keshaviah PR
    Kidney Int; 1997 Jun; 51(6):2013-7. PubMed ID: 9186896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Urea separation in flat-plate microchannel hemodialyzer; experiment and modeling.
    Tuhy AR; Anderson EK; Jovanovic GN
    Biomed Microdevices; 2012 Jun; 14(3):595-602. PubMed ID: 22374475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proton magnetic resonance imaging of flow motion of heavy water injected into a hollow fiber dialyzer filled with saline.
    Osuga T; Obata T; Ikehira H
    Magn Reson Imaging; 2004 Apr; 22(3):413-6. PubMed ID: 15062937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dialyzer fiber bundle volume and kinetics of solute removal in continuous venovenous hemodialysis.
    Liangos O; Sakiewicz PG; Kanagasundaram NS; Hammel J; Pajouh M; Seifert T; Paganini EP
    Am J Kidney Dis; 2002 May; 39(5):1047-53. PubMed ID: 11979349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clamping of the dialysate outlet line in the Genius dialysis system does not alter dialysate flow or clearances.
    Van Biesen W; Eloot S; Verleysen A; Glorieux G; Veys N; Vanholder R; Lameire N
    Nephrol Dial Transplant; 2006 Apr; 21(4):1069-72. PubMed ID: 16410271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increases in mass transfer-area coefficients and urea Kt/V with increasing dialysate flow rate are greater for high-flux dialyzers.
    Leypoldt JK; Cheung AK
    Am J Kidney Dis; 2001 Sep; 38(3):575-9. PubMed ID: 11532691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transfer of cytokine-inducing bacterial products across hemodialyzer membranes in the presence of plasma or whole blood.
    Pereira BJ; Sundaram S; Barrett TW; Butt NK; Porat R; King AJ; Dinarello CA
    Clin Nephrol; 1996 Dec; 46(6):394-401. PubMed ID: 8982556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An in vivo-in vitro study of cefepime and cefazolin dialytic clearance during high-flux hemodialysis.
    Maynor LM; Carl DE; Matzke GR; Gehr TW; Farthing C; Farthing D; Brophy DF
    Pharmacotherapy; 2008 Aug; 28(8):977-83. PubMed ID: 18657014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of dialyzer geometry on blood coagulation and biocompatibility.
    Lins LE; Boberg U; Jacobson SH; Kjellstrand C; Ljungberg B; Skröder R
    Clin Nephrol; 1993 Nov; 40(5):281-5. PubMed ID: 8281717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemodialyzer: from macro-design to membrane nanostructure; the case of the FX-class of hemodialyzers.
    Ronco C; Bowry SK; Brendolan A; Crepaldi C; Soffiati G; Fortunato A; Bordoni V; Granziero A; Torsello G; La Greca G
    Kidney Int Suppl; 2002 May; (80):126-42. PubMed ID: 11982827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional dialysate flow analysis in a hollow-fiber dialyzer by perfusion computed tomography.
    Kim JC; Kim JH; Kim HC; Kim KG; Lee JC; Kang E; Kim HC; Min BG; Ronco C
    Int J Artif Organs; 2008 Jun; 31(6):553-60. PubMed ID: 18609508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of blood and dialysate flow and surface on performance of new polysulfone hemodialysis dialyzers.
    Mandolfo S; Malberti F; Imbasciati E; Cogliati P; Gauly A
    Int J Artif Organs; 2003 Feb; 26(2):113-20. PubMed ID: 12653344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Factors which influence phosphorus removal in hemodialysis].
    Gallar P; Ortiz M; Ortega O; Rodríguez I; Seijas V; Carreño A; Oliet A; Vigil A
    Nefrologia; 2007; 27(1):46-52. PubMed ID: 17402879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hollow fiber shape alters solute clearances in high flux hemodialyzers.
    Leypoldt JK; Cheung AK; Chirananthavat T; Gilson JF; Kamerath CD; Deeter RB
    ASAIO J; 2003; 49(1):81-7. PubMed ID: 12558312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nondestructive evaluation by x-ray computed tomography of dialysate flow patterns in capillary dialyzers.
    Takesawa S; Terasawa M; Sakagami M; Kobayashi T; Hidai H; Sakai K
    ASAIO Trans; 1988; 34(3):794-9. PubMed ID: 3196601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of flow baffles on the dialysate flow distribution of hollow-fiber hemodialyzers: a nonintrusive experimental study using MRI.
    Poh CK; Hardy PA; Liao Z; Huang Z; Clark WR; Gao D
    J Biomech Eng; 2003 Aug; 125(4):481-9. PubMed ID: 12968572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement of convective transport by internal filtration in a modified experimental hemodialyzer: technical note.
    Ronco C; Orlandini G; Brendolan A; Lupi A; La Greca G
    Kidney Int; 1998 Sep; 54(3):979-85. PubMed ID: 9734626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combining SPECT medical imaging and computational fluid dynamics for analyzing blood and dialysate flow in hemodialyzers.
    Eloot S; D'Asseler Y; De Bondt P; Verdonck R
    Int J Artif Organs; 2005 Jul; 28(7):739-49. PubMed ID: 16049908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.