These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 11792784)

  • 41. Organization and cellular biology of the perichondrial ossification groove of ranvier: a morphological study in rabbits.
    Shapiro F; Holtrop ME; Glimcher MJ
    J Bone Joint Surg Am; 1977 Sep; 59(6):703-23. PubMed ID: 71299
    [TBL] [Abstract][Full Text] [Related]  

  • 42. VEGFA is necessary for chondrocyte survival during bone development.
    Zelzer E; Mamluk R; Ferrara N; Johnson RS; Schipani E; Olsen BR
    Development; 2004 May; 131(9):2161-71. PubMed ID: 15073147
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Morphology of bone development and bone remodeling in embryonic chick limbs.
    Pechak DG; Kujawa MJ; Caplan AI
    Bone; 1986; 7(6):459-72. PubMed ID: 3801237
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Epiphyseal growth zones in cortisone-treated rabbits.
    Berntsen E
    Acta Pharmacol Toxicol (Copenh); 1968; 26(5):413-24. PubMed ID: 4236055
    [No Abstract]   [Full Text] [Related]  

  • 45. Absence of cartilage canals in the long bone extremities of four species of skeletally immature marsupials.
    Thorp BH
    Anat Rec; 1990 Apr; 226(4):440-6. PubMed ID: 2331058
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxygen tension in zones of the epiphyseal plate, the metaphysis and diaphysis. An in vitro and in vivo study in rats and rabbits.
    Brighton CT; Heppenstall RB
    J Bone Joint Surg Am; 1971 Jun; 53(4):719-28. PubMed ID: 5580029
    [No Abstract]   [Full Text] [Related]  

  • 47. Age-related vascular changes in the epiphysis, physis, and metaphysis: normal findings on gadolinium-enhanced MRI of piglets.
    Jaramillo D; Villegas-Medina OL; Doty DK; Rivas R; Strife K; Dwek JR; Mulkern RV; Shapiro F
    AJR Am J Roentgenol; 2004 Feb; 182(2):353-60. PubMed ID: 14736661
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The timing of ossification of the limb bones, and growth rates of various long bones of the fore and hind limbs of the prenatal and early postnatal laboratory mouse.
    Patton JT; Kaufman MH
    J Anat; 1995 Feb; 186 ( Pt 1)(Pt 1):175-85. PubMed ID: 7649813
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of the innervation of long bones: expression of the growth-associated protein 43.
    Gajda M; Adriaensen D; Cichocki T
    Folia Histochem Cytobiol; 2000; 38(3):103-10. PubMed ID: 10970069
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cellular and molecular events during embryonic bone development.
    Bruder SP; Caplan AI
    Connect Tissue Res; 1989; 20(1-4):65-71. PubMed ID: 2692958
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chondrogenesis of the limbs and mesopodial ossification of Podocnemis expansa Schweigger, 1812 (Testudines: Podocnemidae).
    Vieira LG; Santos AL; Lima FC; Moura LR
    J Morphol; 2011 Apr; 272(4):404-18. PubMed ID: 21290416
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cartilage as an interposition material to prevent transphyseal bone bridge formation: an experimental model.
    Lennox DW; Goldner RD; Sussman MD
    J Pediatr Orthop; 1983 May; 3(2):207-10. PubMed ID: 6863526
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bone morphogenetic protein (BMP) localization in developing human and rat growth plate, metaphysis, epiphysis, and articular cartilage.
    Anderson HC; Hodges PT; Aguilera XM; Missana L; Moylan PE
    J Histochem Cytochem; 2000 Nov; 48(11):1493-502. PubMed ID: 11036092
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of the distal femoral epiphysis: a microscopic morphological investigation of the zone of Ranvier.
    Burkus JK; Ogden JA
    J Pediatr Orthop; 1984 Nov; 4(6):661-8. PubMed ID: 6511891
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Physiology and pathology of the epiphyseal cartilage (author's transl)].
    Cotta H; Rauterberg K
    Z Orthop Ihre Grenzgeb; 1979 Feb; 117(1):1-12. PubMed ID: 311559
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gene expression and distribution of connective tissue growth factor (CCN2/CTGF) during secondary ossification center formation.
    Oka M; Kubota S; Kondo S; Eguchi T; Kuroda C; Kawata K; Minagi S; Takigawa M
    J Histochem Cytochem; 2007 Dec; 55(12):1245-55. PubMed ID: 17875658
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enzyme activity determinations in bone and cartilage.
    Delbrück A
    Enzymol Biol Clin (Basel); 1970; 11(1):130-53. PubMed ID: 4313120
    [No Abstract]   [Full Text] [Related]  

  • 58. Runx1/AML1 hematopoietic transcription factor contributes to skeletal development in vivo.
    Lian JB; Balint E; Javed A; Drissi H; Vitti R; Quinlan EJ; Zhang L; Van Wijnen AJ; Stein JL; Speck N; Stein GS
    J Cell Physiol; 2003 Aug; 196(2):301-11. PubMed ID: 12811823
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nonepiphyseal ossification and pseudoepiphysis formation.
    Ogden JA; Ganey TM; Light TR; Greene TL; Belsole RJ
    J Pediatr Orthop; 1994; 14(1):78-82. PubMed ID: 8113377
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Active gelatinase B is identified by histozymography in the cartilage resorption sites of developing long bones.
    Lee ER; Murphy G; El-Alfy M; Davoli MA; Lamplugh L; Docherty AJ; Leblond CP
    Dev Dyn; 1999 Jul; 215(3):190-205. PubMed ID: 10398530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.