BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 11792856)

  • 21. Stochastic simulations on a model of circadian rhythm generation.
    Miura S; Shimokawa T; Nomura T
    Biosystems; 2008; 93(1-2):133-40. PubMed ID: 18585851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ontogenesis of photoperiodic entrainment of the molecular core clockwork in the rat suprachiasmatic nucleus.
    Kováciková Z; Sládek M; Laurinová K; Bendová Z; Illnerová H; Sumová A
    Brain Res; 2005 Dec; 1064(1-2):83-9. PubMed ID: 16289486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice.
    Moriya T; Aida R; Kudo T; Akiyama M; Doi M; Hayasaka N; Nakahata N; Mistlberger R; Okamura H; Shibata S
    Eur J Neurosci; 2009 Apr; 29(7):1447-60. PubMed ID: 19519629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel circadianly expressed Drosophila melanogaster gene dependent on the period gene for its rhythmic expression.
    Van Gelder RN; Krasnow MA
    EMBO J; 1996 Apr; 15(7):1625-31. PubMed ID: 8612586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A reduced model clarifies the role of feedback loops and time delays in the Drosophila circadian oscillator.
    Smolen P; Baxter DA; Byrne JH
    Biophys J; 2002 Nov; 83(5):2349-59. PubMed ID: 12414672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Entrainment dissociates transcription and translation of a circadian clock gene in neurospora.
    Tan Y; Dragovic Z; Roenneberg T; Merrow M
    Curr Biol; 2004 Mar; 14(5):433-8. PubMed ID: 15028220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stochastic simulation of a model for circadian rhythms in plants.
    Zhang R; Gonze D
    J Theor Biol; 2021 Oct; 527():110790. PubMed ID: 34087270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the circadian clock: from molecular mechanism to physiological disorders.
    Leloup JC; Goldbeter A
    Bioessays; 2008 Jun; 30(6):590-600. PubMed ID: 18478538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How temperature changes reset a circadian oscillator.
    Liu Y; Merrow M; Loros JJ; Dunlap JC
    Science; 1998 Aug; 281(5378):825-9. PubMed ID: 9694654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Period shift induction by intermittent stimulation in a Drosophila model of PER protein oscillations.
    Claude D; Clairambault J
    Chronobiol Int; 2000 Jan; 17(1):1-14. PubMed ID: 10672429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian rhythms: PASsing time.
    Millar AJ
    Curr Biol; 1997 Aug; 7(8):R474-6. PubMed ID: 9259541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FWD1-mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation.
    He Q; Cheng P; Yang Y; He Q; Yu H; Liu Y
    EMBO J; 2003 Sep; 22(17):4421-30. PubMed ID: 12941694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Entrainment of a cellular circadian oscillator by light in the presence of molecular noise.
    Wang G; Peskin CS
    Phys Rev E; 2018 Jun; 97(6-1):062416. PubMed ID: 30011522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Circadian rhythms in microorganisms: new complexities.
    Lakin-Thomas PL; Brody S
    Annu Rev Microbiol; 2004; 58():489-519. PubMed ID: 15487946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature compensation of circadian rhythms: control of the period in a model for circadian oscillations of the per protein in Drosophila.
    Leloup JC; Goldbeter A
    Chronobiol Int; 1997 Sep; 14(5):511-20. PubMed ID: 9298286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Signal transduction and amplification in a circadian oscillator: interaction between two colored noises.
    Jian-Cheng S
    J Theor Biol; 2010 Aug; 265(4):565-71. PubMed ID: 20665968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible phosphorylation subserves robust circadian rhythms by creating a switch in inactivating the positive element.
    Cheng Z; Liu F; Zhang XP; Wang W
    Biophys J; 2009 Dec; 97(11):2867-75. PubMed ID: 19948115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A molecular explanation for the long-term suppression of circadian rhythms by a single light pulse.
    Leloup JC; Goldbeter A
    Am J Physiol Regul Integr Comp Physiol; 2001 Apr; 280(4):R1206-12. PubMed ID: 11247846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A model of molecular circadian clocks: multiple mechanisms for phase shifting and a requirement for strong nonlinear interactions.
    Scheper TO; Klinkenberg D; van Pelt J; Pennartz C
    J Biol Rhythms; 1999 Jun; 14(3):213-20. PubMed ID: 10452333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drosophila photoreceptors contain an autonomous circadian oscillator that can function without period mRNA cycling.
    Cheng Y; Hardin PE
    J Neurosci; 1998 Jan; 18(2):741-50. PubMed ID: 9425016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.