These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 11793181)

  • 1. The effect of micromovement on callus formation.
    Yamaji T; Ando K; Wolf S; Augat P; Claes L
    J Orthop Sci; 2001; 6(6):571-5. PubMed ID: 11793181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of size and stability of the osteotomy gap on the success of fracture healing.
    Claes L; Augat P; Suger G; Wilke HJ
    J Orthop Res; 1997 Jul; 15(4):577-84. PubMed ID: 9379268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing.
    Claes L; Eckert-Hübner K; Augat P
    J Orthop Res; 2002 Sep; 20(5):1099-105. PubMed ID: 12382978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fracture gap size influences the local vascularization and tissue differentiation in callus healing.
    Claes L; Eckert-Hübner K; Augat P
    Langenbecks Arch Surg; 2003 Oct; 388(5):316-22. PubMed ID: 13680236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear movement at the fracture site delays healing in a diaphyseal fracture model.
    Augat P; Burger J; Schorlemmer S; Henke T; Peraus M; Claes L
    J Orthop Res; 2003 Nov; 21(6):1011-7. PubMed ID: 14554213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local tissue properties in bone healing: influence of size and stability of the osteotomy gap.
    Augat P; Margevicius K; Simon J; Wolf S; Suger G; Claes L
    J Orthop Res; 1998 Jul; 16(4):475-81. PubMed ID: 9747790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel model to study metaphyseal bone healing under defined biomechanical conditions.
    Claes L; Veeser A; Göckelmann M; Simon U; Ignatius A
    Arch Orthop Trauma Surg; 2009 Jul; 129(7):923-8. PubMed ID: 18654792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of cyclic compression and distraction on the healing of experimental tibial fractures.
    Hente R; Füchtmeier B; Schlegel U; Ernstberger A; Perren SM
    J Orthop Res; 2004 Jul; 22(4):709-15. PubMed ID: 15183425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The vascular response to fracture micromovement.
    Wallace AL; Draper ER; Strachan RK; McCarthy ID; Hughes SP
    Clin Orthop Relat Res; 1994 Apr; (301):281-90. PubMed ID: 8156689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histomorphometric Analysis of Callus Formation Stimulated by Axial Dynamisation in a Standardised Ovine Osteotomy Model.
    Reich KM; Tangl S; Heimel P; Lettner S; Ignatius A; Claes LE; Pfeil J; Janousek A; Redl H
    Biomed Res Int; 2019; 2019():4250940. PubMed ID: 30891456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone-healing patterns affected by loading, fracture fragment stability, fracture type, and fracture site compression.
    Aro HT; Chao EY
    Clin Orthop Relat Res; 1993 Aug; (293):8-17. PubMed ID: 8339513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain rate and timing of stimulation in mechanical modulation of fracture healing.
    Goodship AE; Cunningham JL; Kenwright J
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S105-15. PubMed ID: 9917631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure, oxygen tension and temperature in the periosteal callus during bone healing--an in vivo study in sheep.
    Epari DR; Lienau J; Schell H; Witt F; Duda GN
    Bone; 2008 Oct; 43(4):734-9. PubMed ID: 18634913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical evaluation of healing in a non-critical defect in a large animal model of osteoporosis.
    Lill CA; Hesseln J; Schlegel U; Eckhardt C; Goldhahn J; Schneider E
    J Orthop Res; 2003 Sep; 21(5):836-42. PubMed ID: 12919871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do serological tissue turnover markers represent callus formation during fracture healing?
    Seebeck P; Bail HJ; Exner C; Schell H; Michel R; Amthauer H; Bragulla H; Duda GN
    Bone; 2005 Nov; 37(5):669-77. PubMed ID: 16126014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture near press-on interlocking enhances callus mineralisation in a sheep midshaft tibia osteotomy model.
    Gradl G; Herlyn P; Emmerich J; Friebe U; Martin H; Mittlmeier T
    Injury; 2014 Jan; 45 Suppl 1():S66-70. PubMed ID: 24355198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CYR61 (CCN1) protein expression during fracture healing in an ovine tibial model and its relation to the mechanical fixation stability.
    Lienau J; Schell H; Epari DR; Schütze N; Jakob F; Duda GN; Bail HJ
    J Orthop Res; 2006 Feb; 24(2):254-62. PubMed ID: 16435358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of low-intensity pulsed ultrasound stimulation on callus remodelling in a gap-healing model: evaluation by bone morphometry using three-dimensional quantitative micro-CT.
    Tobita K; Ohnishi I; Matsumoto T; Ohashi S; Bessho M; Kaneko M; Matsuyama J; Nakamura K
    J Bone Joint Surg Br; 2011 Apr; 93(4):525-30. PubMed ID: 21464494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of early axial dynamization on tibial bone healing: a study in dogs.
    Larsson S; Kim W; Caja VL; Egger EL; Inoue N; Chao EY
    Clin Orthop Relat Res; 2001 Jul; (388):240-51. PubMed ID: 11451126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship among bone mineral density, collagen composition, and biomechanical properties of callus in the healing of osteoporotic fracture.
    Shen B; Mu JX; Pei FX
    Chin J Traumatol; 2007 Dec; 10(6):360-5. PubMed ID: 18045519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.