These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Inference of gene regulatory networks by means of dynamic differential Bayesian networks and nonparametric regression. Sugimoto N; Iba H Genome Inform; 2004; 15(2):121-30. PubMed ID: 15706498 [TBL] [Abstract][Full Text] [Related]
5. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Kim S; Imoto S; Miyano S Biosystems; 2004 Jul; 75(1-3):57-65. PubMed ID: 15245804 [TBL] [Abstract][Full Text] [Related]
6. Bayesian finite Markov mixture model for temporal multi-tissue polygenic patterns. Liang Y; Kelemen A Biom J; 2009 Feb; 51(1):56-69. PubMed ID: 19197952 [TBL] [Abstract][Full Text] [Related]
7. [Transcriptomes for serial analysis of gene expression]. Marti J; Piquemal D; Manchon L; Commes T J Soc Biol; 2002; 196(4):303-7. PubMed ID: 12645300 [TBL] [Abstract][Full Text] [Related]
8. Stochastic dynamic modeling of short gene expression time-series data. Wang Z; Yang F; Ho DW; Swift S; Tucker A; Liu X IEEE Trans Nanobioscience; 2008 Mar; 7(1):44-55. PubMed ID: 18334455 [TBL] [Abstract][Full Text] [Related]
10. EXAMINE: a computational approach to reconstructing gene regulatory networks. Deng X; Geng H; Ali H Biosystems; 2005 Aug; 81(2):125-36. PubMed ID: 15951103 [TBL] [Abstract][Full Text] [Related]
11. Bayesian state space models for inferring and predicting temporal gene expression profiles. Liang Y; Kelemen A Biom J; 2007 Dec; 49(6):801-14. PubMed ID: 17638289 [TBL] [Abstract][Full Text] [Related]
12. Inferring gene regulatory networks by integrating static and dynamic data. Ferrazzi F; Magni P; Sacchi L; Nuzzo A; Petrovic U; Bellazzi R Int J Med Inform; 2007 Dec; 76 Suppl 3():S462-75. PubMed ID: 17825607 [TBL] [Abstract][Full Text] [Related]
13. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Hirose O; Yoshida R; Imoto S; Yamaguchi R; Higuchi T; Charnock-Jones DS; Print C; Miyano S Bioinformatics; 2008 Apr; 24(7):932-42. PubMed ID: 18292116 [TBL] [Abstract][Full Text] [Related]
14. Dynamic covariation between gene expression and proteome characteristics. Sharabiani MT; Siermala M; Lehtinen TO; Vihinen M BMC Bioinformatics; 2005 Aug; 6():215. PubMed ID: 16131395 [TBL] [Abstract][Full Text] [Related]
15. A hidden Markov model-based approach for identifying timing differences in gene expression under different experimental factors. Yoneya T; Mamitsuka H Bioinformatics; 2007 Apr; 23(7):842-9. PubMed ID: 17237042 [TBL] [Abstract][Full Text] [Related]
16. Steady state approach to model gene regulatory networks--simulation of microarray experiments. Rawool SB; Venkatesh KV Biosystems; 2007; 90(3):636-55. PubMed ID: 17382459 [TBL] [Abstract][Full Text] [Related]
17. Clustering of change patterns using Fourier coefficients. Kim J; Kim H Bioinformatics; 2008 Jan; 24(2):184-91. PubMed ID: 18025003 [TBL] [Abstract][Full Text] [Related]
18. A microarray data-based semi-kinetic method for predicting quantitative dynamics of genetic networks. Yugi K; Nakayama Y; Kojima S; Kitayama T; Tomita M BMC Bioinformatics; 2005 Dec; 6():299. PubMed ID: 16351711 [TBL] [Abstract][Full Text] [Related]
19. Detecting biological associations between genes based on the theory of phase synchronization. Kim CS; Riikonen P; Salakoski T Biosystems; 2008 May; 92(2):99-113. PubMed ID: 18289772 [TBL] [Abstract][Full Text] [Related]
20. A Gibbs sampler for the identification of gene expression and network connectivity consistency. Brynildsen MP; Tran LM; Liao JC Bioinformatics; 2006 Dec; 22(24):3040-6. PubMed ID: 17060361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]