BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 11793246)

  • 21. Inferring gene regulatory networks from multiple microarray datasets.
    Wang Y; Joshi T; Zhang XS; Xu D; Chen L
    Bioinformatics; 2006 Oct; 22(19):2413-20. PubMed ID: 16864593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method.
    Fujita A; Sato JR; Garay-Malpartida HM; Morettin PA; Sogayar MC; Ferreira CE
    Bioinformatics; 2007 Jul; 23(13):1623-30. PubMed ID: 17463021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tiling array-driven elucidation of transcriptional structures based on maximum-likelihood and Markov models.
    Toyoda T; Shinozaki K
    Plant J; 2005 Aug; 43(4):611-21. PubMed ID: 16098113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the temporal evolution of the Drosophila gene expression from DNA microarray time series.
    Haye A; Dehouck Y; Kwasigroch JM; Bogaerts P; Rooman M
    Phys Biol; 2009 Jan; 6(1):016004. PubMed ID: 19171963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fundamental patterns underlying gene expression profiles: simplicity from complexity.
    Holter NS; Mitra M; Maritan A; Cieplak M; Banavar JR; Fedoroff NV
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8409-14. PubMed ID: 10890920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The relation between codon usage, base correlation and gene expression level in Escherichia coli and yeast.
    Li H; Luo L
    J Theor Biol; 1996 Jul; 181(2):111-24. PubMed ID: 8935590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic-model-based method for selecting significantly expressed genes from time-course expression profiles.
    Wu FX; Zhang WJ
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):16-22. PubMed ID: 19527959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable approach for effective control of gene regulatory networks.
    Tan M; Alhajj R; Polat F
    Artif Intell Med; 2010 Jan; 48(1):51-9. PubMed ID: 19879739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatically inferred Markov network models for classification of chromosomal band pattern structures.
    Granum E; Thomason MG
    Cytometry; 1990; 11(1):26-39. PubMed ID: 2307060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linking RNA measurements and proteomics with genome-scale models.
    Gowen CM; Fong SS
    Methods Mol Biol; 2013; 985():429-45. PubMed ID: 23417816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear response of gene expression to chemical perturbations: a noise-detector model and its predictions.
    Nacher JC; Ryabov VB
    Biosystems; 2012 Jan; 107(1):9-17. PubMed ID: 21871947
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating time-dependent gene networks from time series microarray data by dynamic linear models with Markov switching.
    Yoshida R; Imoto S; Higuchi T
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():289-98. PubMed ID: 16447986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iterative signature algorithm for the analysis of large-scale gene expression data.
    Bergmann S; Ihmels J; Barkai N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031902. PubMed ID: 12689096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A duplication growth model of gene expression networks.
    Bhan A; Galas DJ; Dewey TG
    Bioinformatics; 2002 Nov; 18(11):1486-93. PubMed ID: 12424120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns.
    Lezon TR; Banavar JR; Cieplak M; Maritan A; Fedoroff NV
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):19033-8. PubMed ID: 17138668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Hidden Markov Model approach to predicting yeast gene function from sequential gene expression data.
    Deng X; Geng H; Ali HH
    Int J Bioinform Res Appl; 2008; 4(3):263-73. PubMed ID: 18640903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Testing of chromosomal clumping of gene properties.
    Fernandez-Ricaud L; Dalevi D; Blomberg A; Nerman O
    Stat Appl Genet Mol Biol; 2009; 8():Article 19. PubMed ID: 19341353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. State space modeling of yeast gene expression dynamics.
    Haavisto O; Hyƶtyniemi H; Roos C
    J Bioinform Comput Biol; 2007 Feb; 5(1):31-46. PubMed ID: 17477490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From microarrays to networks: mining expression time series.
    Dewey TG
    Drug Discov Today; 2002 Oct; 7(20 Suppl):S170-5. PubMed ID: 12546901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A computer-based microarray experiment design-system for gene-regulation pathway discovery.
    Yoo C; Cooper GF
    AMIA Annu Symp Proc; 2003; 2003():733-7. PubMed ID: 14728270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.