These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 11794512)
1. Transport measurements across Caco-2 monolayers of different organic and inorganic selenium: influence of sulfur compounds. Leblondel G; Mauras Y; Cailleux A; Allain P Biol Trace Elem Res; 2001 Dec; 83(3):191-206. PubMed ID: 11794512 [TBL] [Abstract][Full Text] [Related]
2. Estimating intestinal absorption of inorganic and organic selenium compounds by in vitro flux and biotransformation studies in Caco-2 cells and ICP-MS detection. Gammelgaard B; Rasmussen LH; Gabel-Jensen C; Steffansen B Biol Trace Elem Res; 2012 Feb; 145(2):248-56. PubMed ID: 21863324 [TBL] [Abstract][Full Text] [Related]
3. Methioninase and selenomethionine but not Se-methylselenocysteine generate methylselenol and superoxide in an in vitro chemiluminescent assay: implications for the nutritional carcinostatic activity of selenoamino acids. Spallholz JE; Palace VP; Reid TW Biochem Pharmacol; 2004 Feb; 67(3):547-54. PubMed ID: 15037206 [TBL] [Abstract][Full Text] [Related]
4. Forms of selenium affect its transport, uptake and glutathione peroxidase activity in the Caco-2 cell model. Wang Y; Fu L Biol Trace Elem Res; 2012 Oct; 149(1):110-6. PubMed ID: 22451375 [TBL] [Abstract][Full Text] [Related]
5. [Absorption of papaverine, laudanosine and cepharanthine across human intestine by using human Caco-2 cells monolayers model]. Ma L; Yang XW Yao Xue Xue Bao; 2008 Feb; 43(2):202-7. PubMed ID: 18507350 [TBL] [Abstract][Full Text] [Related]
6. An in vitro investigation of species-dependent intestinal transport of selenium and the impact of this process on selenium bioavailability. Thiry C; Ruttens A; Pussemier L; Schneider YJ Br J Nutr; 2013 Jun; 109(12):2126-34. PubMed ID: 23148951 [TBL] [Abstract][Full Text] [Related]
7. S-adenosyl-L-methionine: transcellular transport and uptake by Caco-2 cells and hepatocytes. McMillan JM; Walle UK; Walle T J Pharm Pharmacol; 2005 May; 57(5):599-605. PubMed ID: 15901349 [TBL] [Abstract][Full Text] [Related]
8. Glutathione transport in human retinal pigment epithelial (HRPE) cells: apical localization of sodium-dependent gsh transport. Kannan R; Tang D; Hu J; Bok D Exp Eye Res; 2001 Jun; 72(6):661-6. PubMed ID: 11384154 [TBL] [Abstract][Full Text] [Related]
9. Transport of selenoamino acids and their sulfur analogues across the intestinal brush border membrane of pigs. Wolffram S; Berger B; Grenacher B; Scharrer E J Nutr; 1989 May; 119(5):706-12. PubMed ID: 2723818 [TBL] [Abstract][Full Text] [Related]
10. The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: uptake, translocation, and speciation. Šindelářová K; Száková J; Tremlová J; Mestek O; Praus L; Kaňa A; Najmanová J; Tlustoš P Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(12):2027-38. PubMed ID: 26414440 [TBL] [Abstract][Full Text] [Related]
11. Capabilities of mixed-mode liquid chromatography coupled to inductively coupled plasma mass spectrometry for the simultaneous speciation analysis of inorganic and organically-bound selenium. Peachey E; Cook K; Castles A; Hopley C; Goenaga-Infante H J Chromatogr A; 2009 Oct; 1216(42):7001-6. PubMed ID: 19758595 [TBL] [Abstract][Full Text] [Related]
12. Selenium Biofortification and Antioxidant Activity in Cordyceps militaris Supplied with Selenate, Selenite, or Selenomethionine. Hu T; Liang Y; Zhao G; Wu W; Li H; Guo Y Biol Trace Elem Res; 2019 Feb; 187(2):553-561. PubMed ID: 29855849 [TBL] [Abstract][Full Text] [Related]
13. Availability and metabolism of 77Se-methylseleninic acid compared simultaneously with those of three related selenocompounds. Suzuki KT; Ohta Y; Suzuki N Toxicol Appl Pharmacol; 2006 Nov; 217(1):51-62. PubMed ID: 16962623 [TBL] [Abstract][Full Text] [Related]
14. Generation of reactive oxygen species from the reaction of selenium compounds with thiols and mammary tumor cells. Yan L; Spallholz JE Biochem Pharmacol; 1993 Jan; 45(2):429-37. PubMed ID: 8382065 [TBL] [Abstract][Full Text] [Related]
15. Transport of nickel across monolayers of human intestinal Caco-2 cells. Tallkvist J; Tjälve H Toxicol Appl Pharmacol; 1998 Jul; 151(1):117-22. PubMed ID: 9705894 [TBL] [Abstract][Full Text] [Related]
16. [Absorption of coptisine chloride and berberrubine across human intestinal epithelial by using human Caco-2 cell monolayers]. Ma L; Yang XW Zhongguo Zhong Yao Za Zhi; 2007 Dec; 32(23):2523-7. PubMed ID: 18330249 [TBL] [Abstract][Full Text] [Related]
17. Chemical form of selenium affects its uptake, transport, and glutathione peroxidase activity in the human intestinal Caco-2 cell model. Zeng H; Jackson MI; Cheng WH; Combs GF Biol Trace Elem Res; 2011 Nov; 143(2):1209-18. PubMed ID: 21181292 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the selenium metabolism in cancer cell lines. Lunøe K; Gabel-Jensen C; Stürup S; Andresen L; Skov S; Gammelgaard B Metallomics; 2011 Feb; 3(2):162-8. PubMed ID: 21161099 [TBL] [Abstract][Full Text] [Related]
19. Role of 99mTc-mannitol and 99mTc-PEG in the assessment of paracellular integrity of cell monolayers. Shah PJ; Jogani VV; Mishra P; Mishra AK; Bagchi T; Misra AR Nucl Med Commun; 2007 Aug; 28(8):653-9. PubMed ID: 17625388 [TBL] [Abstract][Full Text] [Related]
20. Production and characterization of fully selenomethionine-labeled Saccharomyces cerevisiae. Ouerdane L; Mester Z J Agric Food Chem; 2008 Dec; 56(24):11792-9. PubMed ID: 19035646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]