These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11794628)

  • 21. Derivation of optical properties of carbonaceous aerosols by monochromated electron energy-loss spectroscopy.
    Zhu J; Crozier PA; Ercius P; Anderson JR
    Microsc Microanal; 2014 Jun; 20(3):748-59. PubMed ID: 24735494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advantages of a monochromator for bandgap measurements using electron energy-loss spectroscopy.
    Kimoto K; Kothleitner G; Grogger W; Matsui Y; Hofer F
    Micron; 2005; 36(2):185-9. PubMed ID: 15629650
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence.
    Jeon KJ; Lee Z; Pollak E; Moreschini L; Bostwick A; Park CM; Mendelsberg R; Radmilovic V; Kostecki R; Richardson TJ; Rotenberg E
    ACS Nano; 2011 Feb; 5(2):1042-6. PubMed ID: 21204572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2.
    Tongay S; Zhou J; Ataca C; Lo K; Matthews TS; Li J; Grossman JC; Wu J
    Nano Lett; 2012 Nov; 12(11):5576-80. PubMed ID: 23098085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charting the low-loss region in electron energy loss spectroscopy with machine learning.
    Roest LI; van Heijst SE; Maduro L; Rojo J; Conesa-Boj S
    Ultramicroscopy; 2021 Mar; 222():113202. PubMed ID: 33453606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Networks of semiconducting SWNTs: contribution of midgap electronic states to the electrical transport.
    Itkis ME; Pekker A; Tian X; Bekyarova E; Haddon RC
    Acc Chem Res; 2015 Aug; 48(8):2270-9. PubMed ID: 26244611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural, Optical, and Electronic Properties of Wide Bandgap Perovskites: Experimental and Theoretical Investigations.
    Kumawat NK; Tripathi MN; Waghmare U; Kabra D
    J Phys Chem A; 2016 Jun; 120(22):3917-23. PubMed ID: 27203800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoinduced features of energy bandgap in quaternary Cu2CdGeS4 crystals.
    Brik MG; Kityk IV; Parasyuk OV; Myronchuk GL
    J Phys Condens Matter; 2013 Dec; 25(50):505802. PubMed ID: 24275795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of resolution in core-loss and low-loss spectroscopy in a monochromated microscope.
    Lazar S; Botton GA; Zandbergen HW
    Ultramicroscopy; 2006; 106(11-12):1091-103. PubMed ID: 16872750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical properties of Group X-XII intermetallic compounds studied by HR-EELS.
    Sato Y; Terauchi M; Kameoka S; Tsai AP
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i18-i19. PubMed ID: 25359811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Idealizing Tauc Plot for Accurate Bandgap Determination of Semiconductor with Ultraviolet-Visible Spectroscopy: A Case Study for Cubic Boron Arsenide.
    Zhong H; Pan F; Yue S; Qin C; Hadjiev V; Tian F; Liu X; Lin F; Wang Z; Bao J
    J Phys Chem Lett; 2023 Jul; 14(29):6702-6708. PubMed ID: 37467492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of a monolayer fullerene network.
    Hou L; Cui X; Guan B; Wang S; Li R; Liu Y; Zhu D; Zheng J
    Nature; 2022 Jun; 606(7914):507-510. PubMed ID: 35705817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electronic structure and optical properties of TaNO: An ab initio study.
    Irfan M; Kamran MA; Azam S; Iqbal MW; Alharbi T; Majid A; Omran SB; Khenata R; Bouhemadou A; Wang X
    J Mol Graph Model; 2019 Nov; 92():296-302. PubMed ID: 31430680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination.
    Zanatta AR
    Sci Rep; 2019 Aug; 9(1):11225. PubMed ID: 31375719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measuring bandgap states in individual non-stoichiometric oxide nanoparticles using monochromated STEM EELS: The Praseodymium-ceria case.
    Bowman WJ; March K; Hernandez CA; Crozier PA
    Ultramicroscopy; 2016 Aug; 167():5-10. PubMed ID: 27152715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The tunable bandgap effect of SnS films.
    Pan L; Yuan S; Lin J; Zou B; Shi LJ
    J Phys Condens Matter; 2018 Nov; 30(46):465302. PubMed ID: 30247149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-energy resolution electron energy-loss spectroscopy study of interband transitions characteristic to single-walled carbon nanotubes.
    Sato Y; Terauchi M
    Microsc Microanal; 2014 Jun; 20(3):807-14. PubMed ID: 24685359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis.
    Yun DJ; Shin WH; Bulliard X; Park JH; Kim S; Chung JG; Kim Y; Heo S; Kim SH
    Nanotechnology; 2016 Aug; 27(34):345704. PubMed ID: 27420635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bandgap prediction of two-dimensional materials using machine learning.
    Zhang Y; Xu W; Liu G; Zhang Z; Zhu J; Li M
    PLoS One; 2021; 16(8):e0255637. PubMed ID: 34388173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.