These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 11794660)

  • 21. Activated sludge deflocculation under temperature upshifts from 30 to 45 degrees C.
    Morgan-Sagastume F; Grant Allen D
    Water Res; 2005 Mar; 39(6):1061-74. PubMed ID: 15766960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on characterization of bioflocculant exopolysaccharide of Azotobacter indicus and its potential for wastewater treatment.
    Patil SV; Patil CD; Salunke BK; Salunkhe RB; Bathe GA; Patil DM
    Appl Biochem Biotechnol; 2011 Feb; 163(4):463-72. PubMed ID: 20730607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioflocculant production and biosorption of zinc and lead by a novel bacterial species, Achromobacter sp. TERI-IASST N, isolated from oil refinery waste.
    Subudhi S; Batta N; Pathak M; Bisht V; Devi A; Lal B; Al khulifah B
    Chemosphere; 2014 Oct; 113():116-24. PubMed ID: 25065798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03.
    Yim JH; Kim SJ; Ahn SH; Lee HK
    Bioresour Technol; 2007 Jan; 98(2):361-7. PubMed ID: 16473007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors.
    Feng L; Wang H; Chen Y; Wang Q
    Bioresour Technol; 2009 Jan; 100(1):44-9. PubMed ID: 18595688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment.
    Shanableh A; Jomaa S
    Water Sci Technol; 2001; 44(10):129-35. PubMed ID: 11794643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrolysis and acidification of waste activated sludge at different pHs.
    Chen Y; Jiang S; Yuan H; Zhou Q; Gu G
    Water Res; 2007 Feb; 41(3):683-9. PubMed ID: 16987541
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioflocculant produced by Aspergillus sp. JS-42.
    Nam JS; Kwon GS; Lee SO; Hwang JS; Lee JD; Yoon BD; Lee TH
    Biosci Biotechnol Biochem; 1996 Feb; 60(2):235-7. PubMed ID: 9063970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production and characterization of a thermostable bioflocculant from Bacillus subtilis F9, isolated from wastewater sludge.
    Giri SS; Harshiny M; Sen SS; Sukumaran V; Park SC
    Ecotoxicol Environ Saf; 2015 Nov; 121():45-50. PubMed ID: 26091955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of extracellular polymeric substances (EPS) fractions from excess sludges and their effects on bioflocculability.
    Yu GH; He PJ; Shao LM
    Bioresour Technol; 2009 Jul; 100(13):3193-8. PubMed ID: 19269815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of a novel bioflocculant by Bacillus licheniformis X14 and its application to low temperature drinking water treatment.
    Li Z; Zhong S; Lei HY; Chen RW; Yu Q; Li HL
    Bioresour Technol; 2009 Jul; 100(14):3650-6. PubMed ID: 19303286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge.
    Bousková A; Dohányos M; Schmidt JE; Angelidaki I
    Water Res; 2005 Apr; 39(8):1481-8. PubMed ID: 15878019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement of activated sludge stabilisation and filterability during anaerobic digestion by fruit and vegetable waste addition.
    Habiba L; Hassib B; Moktar H
    Bioresour Technol; 2009 Feb; 100(4):1555-60. PubMed ID: 18977658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production and characterization of an intracellular bioflocculant by Chryseobacterium daeguense W6 cultured in low nutrition medium.
    Liu W; Wang K; Li B; Yuan H; Yang J
    Bioresour Technol; 2010 Feb; 101(3):1044-8. PubMed ID: 19766490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation.
    Wan C; Zhao XQ; Guo SL; Asraful Alam M; Bai FW
    Bioresour Technol; 2013 May; 135():207-12. PubMed ID: 23218529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge.
    Li XY; Yang SF
    Water Res; 2007 Mar; 41(5):1022-30. PubMed ID: 16952388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of a novel polygalacturonic acid bioflocculant REA-11 by Corynebacterium glutamicum.
    He N; Li Y; Chen J
    Bioresour Technol; 2004 Aug; 94(1):99-105. PubMed ID: 15081493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flocculation behavior and mechanism of bioflocculant produced by Aspergillus flavus.
    Aljuboori AHR; Idris A; Al-Joubory HHR; Uemura Y; Ibn Abubakar BSU
    J Environ Manage; 2015 Mar; 150():466-471. PubMed ID: 25560664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of the IWA ADM1 model to simulate anaerobic co-digestion of organic waste with waste activated sludge in mesophilic condition.
    Derbal K; Bencheikh-Lehocine M; Cecchi F; Meniai AH; Pavan P
    Bioresour Technol; 2009 Feb; 100(4):1539-43. PubMed ID: 18954973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biotechnology of intensive aerobic conversion of sewage sludge and food waste into fertilizer.
    Wang JY; Stabnikova O; Tay ST; Ivanov V; Tay JH
    Water Sci Technol; 2004; 49(10):147-54. PubMed ID: 15259949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.