These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11794682)

  • 21. Behaviour of endocrine disrupting chemicals during the treatment of municipal sewage sludge.
    Ivashechkin P; Corvini PF; Dohmann M
    Water Sci Technol; 2004; 50(5):133-40. PubMed ID: 15497840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of bio-dissolution of spent Ni-Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate.
    Zhao L; Zhu NW; Wang XH
    Chemosphere; 2008 Jan; 70(6):974-81. PubMed ID: 17884135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of arsenic from water: effects of competing anions on As(III) removal in KMnO4-Fe(II) process.
    Guan X; Dong H; Ma J; Jiang L
    Water Res; 2009 Aug; 43(15):3891-9. PubMed ID: 19573891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of As(V) and As(III) by reclaimed iron-oxide coated sands.
    Hsu JC; Lin CJ; Liao CH; Chen ST
    J Hazard Mater; 2008 May; 153(1-2):817-26. PubMed ID: 17988793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention.
    Jia Y; Demopoulos GP
    Water Res; 2008 Feb; 42(3):661-8. PubMed ID: 17825873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Separation of metals and phosphorus from incinerated sewage sludge ash.
    Ito A; Yamada K; Ishikawa N; Umita T
    Water Sci Technol; 2013; 67(11):2488-93. PubMed ID: 23752380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon.
    Mondal P; Majumder CB; Mohanty B
    J Hazard Mater; 2008 Feb; 150(3):695-702. PubMed ID: 17574333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrodialytic removal of cadmium from wastewater sludge.
    Jakobsen MR; Fritt-Rasmussen J; Nielsen S; Ottosen LM
    J Hazard Mater; 2004 Jan; 106(2-3):127-32. PubMed ID: 15177101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment.
    Amuda OS; Amoo IA
    J Hazard Mater; 2007 Mar; 141(3):778-83. PubMed ID: 16959404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of biological processes for the removal of arsenic from groundwaters.
    Katsoyiannis IA; Zouboulis AI
    Water Res; 2004 Jan; 38(1):17-26. PubMed ID: 14630099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilization of heavy metals in sewage sludge composting process.
    Chiang KY; Yoi SD; Lin HN; Wang KS
    Water Sci Technol; 2001; 44(10):95-100. PubMed ID: 11794689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorbent obtained from CEPT sludge in wastewater chemically enhanced treatment.
    Xu GR; Zhang WT; Li GB
    Water Res; 2005 Dec; 39(20):5175-85. PubMed ID: 16310821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recycling of sludge with the Aqua Reci process.
    Stendahl K; Jäfverström S
    Water Sci Technol; 2004; 49(10):233-40. PubMed ID: 15259960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimulation of anaerobic digestion of thickened sewage sludge by iron-rich sludge produced by the fenton method.
    Lee H; Shoda M
    J Biosci Bioeng; 2008 Jul; 106(1):107-10. PubMed ID: 18691541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorus removal from synthetic and municipal wastewater using spent alum sludge.
    Georgantas DA; Grigoropoulou HP
    Water Sci Technol; 2005; 52(10-11):525-32. PubMed ID: 16459830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fe-As sludge stability and effluent quality for a two-stage As-contaminated water treatment with Fe(II) and aeration.
    Zhuang JM; Hobenshield E; Walsh T
    Environ Technol; 2009 Feb; 30(2):199-213. PubMed ID: 19278161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential for land application of contaminated sewage sludge treated with fermented liquid from pineapple wastes.
    Del Mundo Dacera D; Babel S; Parkpian P
    J Hazard Mater; 2009 Aug; 167(1-3):866-72. PubMed ID: 19232826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heavy metals removal from contaminated sewage sludge by naturally fermented raw liquid from pineapple wastes.
    Dacera Ddel M; Babel S
    Water Sci Technol; 2007; 56(7):145-52. PubMed ID: 17951878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: a comparative study.
    Pathak A; Dastidar MG; Sreekrishnan TR
    J Hazard Mater; 2009 Nov; 171(1-3):273-8. PubMed ID: 19586718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New application of a traditional analytical method--arsenic removal from water works sludge during iron(III) chloride coagulant production.
    Maier D; Maier M; Oberacker F
    Fresenius J Anal Chem; 2001 Nov; 371(5):629-36. PubMed ID: 11767889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.