These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11794682)

  • 41. [Effect of iron hydroxide on the phosphate elimination during anaerobic digestion of active sludge].
    Stabnikov VP; Tay TL; Tay DK; Ivanov VN
    Prikl Biokhim Mikrobiol; 2004; 40(4):442-7. PubMed ID: 15455717
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reusability of iron sludge as an iron source for the electrochemical Fenton-type process using Fe²+/HOCl system.
    Kishimoto N; Kitamura T; Kato M; Otsu H
    Water Res; 2013 Apr; 47(5):1919-27. PubMed ID: 23391331
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of sewage sludge application on heavy metal leaching from mine tailings impoundments.
    Andrés NF; Francisco MS
    Bioresour Technol; 2008 Nov; 99(16):7521-30. PubMed ID: 18372173
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of substrate concentration on the bioleaching of heavy metals from sewage sludge.
    Chen YX; Hua YM; Zhang SH
    J Environ Sci (China); 2004; 16(5):788-92. PubMed ID: 15559813
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Total concentrations and fractions of Cd, Cr, Pb, Cu, Ni and Zn in sewage sludge from municipal and industrial wastewater treatment plants.
    Wang C; Hu X; Chen ML; Wu YH
    J Hazard Mater; 2005 Mar; 119(1-3):245-9. PubMed ID: 15752872
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France).
    Casiot C; Morin G; Juillot F; Bruneel O; Personné JC; Leblanc M; Duquesne K; Bonnefoy V; Elbaz-Poulichet F
    Water Res; 2003 Jul; 37(12):2929-36. PubMed ID: 12767295
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Continuous biological ferrous iron oxidation in a submerged membrane bioreactor.
    Park D; Lee DS; Park JM
    Water Sci Technol; 2005; 51(6-7):59-68. PubMed ID: 16003962
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Arsenate removal by zero valent iron: batch and column tests.
    Biterna M; Arditsoglou A; Tsikouras E; Voutsa D
    J Hazard Mater; 2007 Nov; 149(3):548-52. PubMed ID: 17689184
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of metal spiking on different chemical pools and chemically extractable fractions of heavy metals in sewage sludge.
    Kandpal G; Ram B; Srivastava PC; Singh SK
    J Hazard Mater; 2004 Jan; 106(2-3):133-7. PubMed ID: 15177102
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nitrate controls on iron and arsenic in an urban lake.
    Senn DB; Hemond HF
    Science; 2002 Jun; 296(5577):2373-6. PubMed ID: 12089437
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling heavy metal uptake by sludge particulates in the presence of dissolved organic matter.
    Wang J; Huang CP; Allen HE
    Water Res; 2003 Dec; 37(20):4835-42. PubMed ID: 14604629
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Case study of electrochemical metal removal from actual sediment, sludge, sewage and scallop organs and subsequent pH adjustment of sediment for agricultural use.
    Matsumoto N; Uemoto H; Saiki H
    Water Res; 2007 Jun; 41(12):2541-50. PubMed ID: 17475304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing.
    Zhang L; Keller J; Yuan Z
    Water Res; 2009 Sep; 43(17):4123-32. PubMed ID: 19576610
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphorous removal in batch systems using ferric chloride in the presence of activated sludges.
    Caravelli AH; Contreras EM; Zaritzky NE
    J Hazard Mater; 2010 May; 177(1-3):199-208. PubMed ID: 20042277
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Removal of arsenic from water by zero-valent iron.
    Bang S; Korfiatis GP; Meng X
    J Hazard Mater; 2005 May; 121(1-3):61-7. PubMed ID: 15885407
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of Cr from tannery sludge by indigenous sulfur-oxidizing bacteria.
    Fang D; Jin CJ; Zhou LX
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Nov; 42(13):2065-9. PubMed ID: 17990170
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of bioleaching of heavy metals from municipal sludge using indigenous sulfur and iron-oxidizing microorganisms: continuous stirred tank reactor studies.
    Pathak A; Kothari R; Dastidar MG; Sreekrishnan TR; Kim DJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(1):93-100. PubMed ID: 24117088
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibitory effects of CaO/Fe2O3 on arsenic emission during sewage sludge pyrolysis.
    Han H; Hu S; Lu C; Wang Y; Jiang L; Xiang J; Su S
    Bioresour Technol; 2016 Oct; 218():134-9. PubMed ID: 27359062
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of using arsenic-iron sludge wastes in brick making.
    Hassan KM; Fukushi K; Turikuzzaman K; Moniruzzaman SM
    Waste Manag; 2014 Jun; 34(6):1072-8. PubMed ID: 24129213
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of dissolved Zn(II) using coal mine drainage sludge: implications for acidic wastewater treatment.
    Cui M; Jang M; Cannon FS; Na S; Khim J; Park JK
    J Environ Manage; 2013 Feb; 116():107-12. PubMed ID: 23295677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.