These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 11795857)
1. Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Ratledge C; Kanagachandran K; Anderson AJ; Grantham DJ; Stephenson JC Lipids; 2001 Nov; 36(11):1241-6. PubMed ID: 11795857 [TBL] [Abstract][Full Text] [Related]
2. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. De Swaaf ME; Sijtsma L; Pronk JT Biotechnol Bioeng; 2003 Mar; 81(6):666-72. PubMed ID: 12529880 [TBL] [Abstract][Full Text] [Related]
3. Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. de Swaaf ME; Pronk JT; Sijtsma L Appl Microbiol Biotechnol; 2003 Mar; 61(1):40-3. PubMed ID: 12658513 [TBL] [Abstract][Full Text] [Related]
4. High-Density pH-Auxostat Fed-Batch Culture of Schizochytrium limacinum SR21 with Acetic Acid as a Carbon Source. Shafiq M; Zeb L; Cui G; Jawad M; Chi Z Appl Biochem Biotechnol; 2020 Dec; 192(4):1163-1175. PubMed ID: 32700201 [TBL] [Abstract][Full Text] [Related]
5. Repeated fed-batch strategy and metabolomic analysis to achieve high docosahexaenoic acid productivity in Crypthecodinium cohnii. Liu L; Wang F; Pei G; Cui J; Diao J; Lv M; Chen L; Zhang W Microb Cell Fact; 2020 Apr; 19(1):91. PubMed ID: 32299433 [TBL] [Abstract][Full Text] [Related]
6. Improved docosahexaenoic acid production in Aurantiochytrium by glucose limited pH-auxostat fed-batch cultivation. Janthanomsuk P; Verduyn C; Chauvatcharin S Bioresour Technol; 2015 Nov; 196():592-9. PubMed ID: 26298403 [TBL] [Abstract][Full Text] [Related]
7. Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Yang HL; Lu CK; Chen SF; Chen YM; Chen YM Mar Biotechnol (NY); 2010 Apr; 12(2):173-85. PubMed ID: 19609613 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen Feeding Strategies and Metabolomic Analysis To Alleviate High-Nitrogen Inhibition on Docosahexaenoic Acid Production in Crypthecodinium cohnii. Liu L; Wang F; Yang J; Li X; Cui J; Liu J; Shi M; Wang K; Chen L; Zhang W J Agric Food Chem; 2018 Oct; 66(40):10640-10650. PubMed ID: 30226986 [TBL] [Abstract][Full Text] [Related]
9. Syntrophy of Crypthecodinium cohnii and immobilized Zymomonas mobilis for docosahexaenoic acid production from sucrose-containing substrates. Strazdina I; Klavins L; Galinina N; Shvirksts K; Grube M; Stalidzans E; Kalnenieks U J Biotechnol; 2021 Sep; 338():63-70. PubMed ID: 34280360 [TBL] [Abstract][Full Text] [Related]
10. Effect of n-dodecane on Crypthecodinium cohnii fermentations and DHA production. da Silva TL; Mendes A; Mendes RL; Calado V; Alves SS; Vasconcelos JM; Reis A J Ind Microbiol Biotechnol; 2006 Jun; 33(6):408-16. PubMed ID: 16501933 [TBL] [Abstract][Full Text] [Related]
11. Eicosapentaenoic and docosahexaenoic acids production by and okara-utilizing potential of thraustochytrids. Fan KW; Chen F; Jones EB; Vrijmoed LL J Ind Microbiol Biotechnol; 2001 Oct; 27(4):199-202. PubMed ID: 11687930 [TBL] [Abstract][Full Text] [Related]
12. Improvement of a two-stage fermentation process for docosahexaenoic acid production by Aurantiochytrium limacinum SR21 applying statistical experimental designs and data analysis. Rosa SM; Soria MA; Vélez CG; Galvagno MA Bioresour Technol; 2010 Apr; 101(7):2367-74. PubMed ID: 20015637 [TBL] [Abstract][Full Text] [Related]
13. Kinetic and Stoichiometric Modeling-Based Analysis of Docosahexaenoic Acid (DHA) Production Potential by Berzins K; Muiznieks R; Baumanis MR; Strazdina I; Shvirksts K; Prikule S; Galvanauskas V; Pleissner D; Pentjuss A; Grube M; Kalnenieks U; Stalidzans E Mar Drugs; 2022 Feb; 20(2):. PubMed ID: 35200644 [TBL] [Abstract][Full Text] [Related]
14. A new synthetic medium for the optimization of docosahexaenoic acid production in Crypthecodinium cohnii. Song P; Kuryatov A; Axelsen PH PLoS One; 2020; 15(3):e0229556. PubMed ID: 32196504 [TBL] [Abstract][Full Text] [Related]
15. Microbial production of docosahexaenoic acid by a low temperature-adaptive strain Thraustochytriidae sp. Z105: screening and optimization. Zhou PP; Lu MB; Li W; Yu LJ J Basic Microbiol; 2010 Aug; 50(4):380-7. PubMed ID: 20473964 [TBL] [Abstract][Full Text] [Related]
16. The use of multi-parameter flow cytometry to study the impact of n-dodecane additions to marine dinoflagellate microalga Crypthecodinium cohnii batch fermentations and DHA production. Lopes da Silva T; Reis A J Ind Microbiol Biotechnol; 2008 Aug; 35(8):875-87. PubMed ID: 18461374 [TBL] [Abstract][Full Text] [Related]
17. Sesamol Enhances Cell Growth and the Biosynthesis and Accumulation of Docosahexaenoic Acid in the Microalga Crypthecodinium cohnii. Liu B; Liu J; Sun P; Ma X; Jiang Y; Chen F J Agric Food Chem; 2015 Jun; 63(23):5640-5. PubMed ID: 26017014 [TBL] [Abstract][Full Text] [Related]
18. Utilization of lignocellulosic biomass towards the production of omega-3 fatty acids by the heterotrophic marine microalga Crypthecodinium cohnii. Karnaouri A; Chalima A; Kalogiannis KG; Varamogianni-Mamatsi D; Lappas A; Topakas E Bioresour Technol; 2020 May; 303():122899. PubMed ID: 32028216 [TBL] [Abstract][Full Text] [Related]
19. Analysis of docosahexaenoic acid biosynthesis in Crypthecodinium cohnii by 13C labelling and desaturase inhibitor experiments. de Swaaf ME; de Rijk TC; van der Meer P; Eggink G; Sijtsma L J Biotechnol; 2003 Jun; 103(1):21-9. PubMed ID: 12770501 [TBL] [Abstract][Full Text] [Related]
20. Rewiring metabolic network by chemical modulator based laboratory evolution doubles lipid production in Crypthecodinium cohnii. Diao J; Song X; Cui J; Liu L; Shi M; Wang F; Zhang W Metab Eng; 2019 Jan; 51():88-98. PubMed ID: 30393203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]