These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11796111)

  • 1. Autocatalytic peptide cyclization during chain folding of histidine ammonia-lyase.
    Baedeker M; Schulz GE
    Structure; 2002 Jan; 10(1):61-7. PubMed ID: 11796111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile.
    Schwede TF; Rétey J; Schulz GE
    Biochemistry; 1999 Apr; 38(17):5355-61. PubMed ID: 10220322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of two histidine ammonia-lyase modifications and implications for the catalytic mechanism.
    Baedeker M; Schulz GE
    Eur J Biochem; 2002 Mar; 269(6):1790-7. PubMed ID: 11895450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the active site of histidine ammonia-lyase from Pseudomonas putida.
    Röther D; Poppe L; Viergutz S; Langer B; Rétey J
    Eur J Biochem; 2001 Dec; 268(23):6011-9. PubMed ID: 11732994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stepwise Simulation of 3,5-Dihydro-5-methylidene-4H-imidazol-4-one (MIO) Biogenesis in Histidine Ammonia-lyase.
    Sánchez-Murcia PA; Bueren-Calabuig JA; Camacho-Artacho M; Cortés-Cabrera Á; Gago F
    Biochemistry; 2016 Oct; 55(41):5854-5864. PubMed ID: 27682658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylidene-imidazolone: a novel electrophile for substrate activation.
    Poppe L
    Curr Opin Chem Biol; 2001 Oct; 5(5):512-24. PubMed ID: 11578924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylidene-imidazolone (MIO) from histidine and phenylalanine ammonia-lyase.
    Langer B; Langer M; Rétey J
    Adv Protein Chem; 2001; 58():175-214. PubMed ID: 11665488
    [No Abstract]   [Full Text] [Related]  

  • 8. Understanding GFP chromophore biosynthesis: controlling backbone cyclization and modifying post-translational chemistry.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    Biochemistry; 2005 Feb; 44(6):1960-70. PubMed ID: 15697221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational investigation of the histidine ammonia-lyase reaction: a modified loop conformation and the role of the zinc(II) ion.
    Seff AL; Pilbák S; Silaghi-Dumitrescu I; Poppe L
    J Mol Model; 2011 Jul; 17(7):1551-63. PubMed ID: 20922445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analysis of the autocatalytic posttranslational cyclization observed in histidine ammonia-lyase. A comparison with green fluorescent protein.
    Donnelly M; Fedeles F; Wirstam M; Siegbahn PE; Zimmer M
    J Am Chem Soc; 2001 May; 123(20):4679-86. PubMed ID: 11457276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudomonas fluorescens Strain R124 Encodes Three Different MIO Enzymes.
    Csuka P; Juhász V; Kohári S; Filip A; Varga A; Sátorhelyi P; Bencze LC; Barton H; Paizs C; Poppe L
    Chembiochem; 2018 Feb; 19(4):411-418. PubMed ID: 29193598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Friedel-Crafts-type mechanism for the enzymatic elimination of ammonia from histidine and phenylalanine.
    Poppe L; Rétey J
    Angew Chem Int Ed Engl; 2005 Jun; 44(24):3668-88. PubMed ID: 15906398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis.
    Calabrese JC; Jordan DB; Boodhoo A; Sariaslani S; Vannelli T
    Biochemistry; 2004 Sep; 43(36):11403-16. PubMed ID: 15350127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogenization and crystallization of histidine ammonia-lyase by exchange of a surface cysteine residue.
    Schwede TF; Bädeker M; Langer M; Rétey J; Schulz GE
    Protein Eng; 1999 Feb; 12(2):151-3. PubMed ID: 10195286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histidine ammonia-lyase mutant S143C is posttranslationally converted into fully active wild-type enzyme. Evidence for serine 143 to be the precursor of active site dehydroalanine.
    Langer M; Lieber A; Rétey J
    Biochemistry; 1994 Nov; 33(47):14034-8. PubMed ID: 7947813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ser-143 is an essential active site residue in histidine ammonia-lyase of Pseudomonas putida.
    Hernandez D; Phillips AT
    Biochem Biophys Res Commun; 1994 Jun; 201(3):1433-8. PubMed ID: 8024588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallization and preliminary X-ray studies of Pseudomonas putida histidine ammonium-lyase.
    Teo B; Kidd RD; Mack J; Tiwari A; Hernandez D; Phillips AT; Farber GK
    Acta Crystallogr D Biol Crystallogr; 1998 Jul; 54(Pt 4):681-3. PubMed ID: 9761874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery and role of methylidene imidazolone, a highly electrophilic prosthetic group.
    Rétey J
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):179-84. PubMed ID: 12686130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Ser143 as the site of modification in the active site of histidine ammonia-lyase.
    Hernandez D; Stroh JG; Phillips AT
    Arch Biochem Biophys; 1993 Nov; 307(1):126-32. PubMed ID: 8239649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of serine-143 as the most likely precursor of dehydroalanine in the active site of histidine ammonia-lyase. A study of the overexpressed enzyme by site-directed mutagenesis.
    Langer M; Reck G; Reed J; Rétey J
    Biochemistry; 1994 May; 33(21):6462-7. PubMed ID: 8204579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.