These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11796138)

  • 21. Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects.
    Edvinsson L; Ekman R; Jansen I; McCulloch J; Uddman R
    J Cereb Blood Flow Metab; 1987 Dec; 7(6):720-8. PubMed ID: 3500957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes of neuropeptide immunoreactivity in cerebrovascular nerve fibers after experimentally produced SAH. Immunohistochemical study in the dog.
    Uemura Y; Sugimoto T; Okamoto S; Handa H; Mizuno N
    J Neurosurg; 1987 May; 66(5):741-7. PubMed ID: 2437267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The vascular architecture and innervation of the cerebral arteries in Leiothrix lutea.
    Hsu KC; Tsai HK; Tagawa T
    J Formos Med Assoc; 1991 Jan; 90(1):1-9. PubMed ID: 1715382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perivascular nerves of the human basal cerebral arteries: II. Changes in aging and Alzheimer's disease.
    Bleys RL; Cowen T; Groen GJ; Hillen B
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):1048-57. PubMed ID: 8784250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuropeptide Y- and vasoactive intestinal polypeptide-containing nerve fibers in the human cerebral arteries: characteristics of distribution.
    Kawamura K; Sakata N; Takebayashi S
    Angiology; 1991 Jan; 42(1):35-43. PubMed ID: 1992857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunohistochemical evidence for the absence of central neuron projection to pial blood vessels and dura mater.
    Mathiau P; Escurat M; Aubineau P
    Neuroscience; 1993 Feb; 52(3):667-76. PubMed ID: 8450965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of target tissues on their innervation in old age: a transplantation study.
    Gavazzi I; Andrews TJ; Thrasivoulou C; Cowen T
    Neuroreport; 1992 Aug; 3(8):717-20. PubMed ID: 1387812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perivascular nerves of the human basal cerebral arteries: I. Topographical distribution.
    Bleys RL; Cowen T; Groen GJ; Hillen B; Ibrahim NB
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):1034-47. PubMed ID: 8784249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overall distribution of vasoactive intestinal polypeptide-containing nerves on the wall of cerebral arteries: an immunohistochemical study using whole-mounts.
    Matsuyama T; Shiosaka S; Matsumoto M; Yoneda S; Kimura K; Abe H; Hayakawa T; Inoue H; Tohyama M
    Neuroscience; 1983 Sep; 10(1):89-96. PubMed ID: 6358944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative study on the innervation of nerves with calcitonin gene-related peptide, substance P and neurokinin A immunoreactivity in the walls of the cerebral arteries of small bats (Mammalia: Microchiroptera).
    Ando K; Arai S; Kawamura K
    Neuroscience; 1990; 36(2):521-33. PubMed ID: 1699170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. VIP (vasoactive intestinal polypeptide)-containing nerves of intracranial arteries in mammals.
    Edvinsson L; Fahrenkrug J; Hanko J; Owman C; Sundler F; Uddman R
    Cell Tissue Res; 1980; 208(1):135-42. PubMed ID: 6771016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A histochemical study on the innervation of the cerebral blood vessels in bats.
    Ando K
    Cell Tissue Res; 1981; 217(1):55-64. PubMed ID: 7249047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High affinity choline transporter immunoreactivity in rat ileum myenteric nerves.
    Harrington AM; Hutson JM; Southwell BR
    Cell Tissue Res; 2007 Mar; 327(3):421-31. PubMed ID: 17093920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microanatomical changes of intracerebral arteries in spontaneously hypertensive rats: a model of cerebrovascular disease of the elderly.
    Sabbatini M; Strocchi P; Vitaioli L; Amenta F
    Mech Ageing Dev; 2001 Sep; 122(12):1257-68. PubMed ID: 11438117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Study on neuropeptide Y-containing innervation of cerebral small arteries and arterioles in spontaneously hypertensive rat].
    Ren D; Wu C
    Zhonghua Bing Li Xue Za Zhi; 1995 Dec; 24(6):375-7. PubMed ID: 8732097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain stem terminations of the trigeminal and upper spinal ganglia innervation of the cerebrovascular system: WGA-HRP transganglionic study.
    Arbab MA; Delgado T; Wiklund L; Svendgaard NA
    J Cereb Blood Flow Metab; 1988 Feb; 8(1):54-63. PubMed ID: 2448323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A histochemical study of the innervation of cerebral blood vessels in the turtle.
    Iijima T
    J Comp Neurol; 1977 Nov; 176(2):307-14. PubMed ID: 915039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of adenosine A1 and A3 receptor subtypes in rat pial and intracerebral arteries.
    Di Tullio MA; Tayebati SK; Amenta F
    Neurosci Lett; 2004 Aug; 366(1):48-52. PubMed ID: 15265588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrastructure of serotonin-containing nerve fibres in the middle cerebral artery of the rat and evidence for its localization within catecholamine-containing nerve fibres by immunoelectron microscopy.
    Jackowski A; Crockard A; Burnstock G
    Brain Res; 1988 Mar; 443(1-2):159-65. PubMed ID: 3282611
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perivascular substance P: occurrence and distribution in mammalian pial vessels.
    Uddman R; Edvinsson L; Owman C; Sundler F
    J Cereb Blood Flow Metab; 1981; 1(2):227-32. PubMed ID: 6173392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.