These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 11796141)

  • 1. Structure and function of the radical enzyme ribonucleotide reductase.
    Eklund H; Uhlin U; Färnegårdh M; Logan DT; Nordlund P
    Prog Biophys Mol Biol; 2001 Nov; 77(3):177-268. PubMed ID: 11796141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, function, and mechanism of ribonucleotide reductases.
    Kolberg M; Strand KR; Graff P; Andersson KK
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):1-34. PubMed ID: 15158709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribonucleotide reductases and radical reactions.
    Fontecave M
    Cell Mol Life Sci; 1998 Jul; 54(7):684-95. PubMed ID: 9711234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteines involved in radical generation and catalysis of class III anaerobic ribonucleotide reductase. A protein engineering study of bacteriophage T4 NrdD.
    Andersson J; Westman M; Sahlin M; Sjoberg BM
    J Biol Chem; 2000 Jun; 275(26):19449-55. PubMed ID: 10748010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase.
    Bennati M; Lendzian F; Schmittel M; Zipse H
    Biol Chem; 2005 Oct; 386(10):1007-22. PubMed ID: 16218873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two active site asparagines are essential for the reaction mechanism of the class III anaerobic ribonucleotide reductase from bacteriophage T4.
    Andersson J; Bodevin S; Westman M; Sahlin M; Sjöberg BM
    J Biol Chem; 2001 Nov; 276(44):40457-63. PubMed ID: 11526118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of allosteric effectors to ribonucleotide reductase protein R1: reduction of active-site cysteines promotes substrate binding.
    Eriksson M; Uhlin U; Ramaswamy S; Ekberg M; Regnström K; Sjöberg BM; Eklund H
    Structure; 1997 Aug; 5(8):1077-92. PubMed ID: 9309223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement by effectors and substrate nucleotides of R1-R2 interactions in Escherichia coli class Ia ribonucleotide reductase.
    Kasrayan A; Birgander PL; Pappalardo L; Regnström K; Westman M; Slaby A; Gordon E; Sjöberg BM
    J Biol Chem; 2004 Jul; 279(30):31050-7. PubMed ID: 15145955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The periodic table of ribonucleotide reductases.
    Ruskoski TB; Boal AK
    J Biol Chem; 2021 Oct; 297(4):101137. PubMed ID: 34461093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer.
    Sintchak MD; Arjara G; Kellogg BA; Stubbe J; Drennan CL
    Nat Struct Biol; 2002 Apr; 9(4):293-300. PubMed ID: 11875520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Crystal Structure of Thermotoga maritima Class III Ribonucleotide Reductase Lacks a Radical Cysteine Pre-Positioned in the Active Site.
    Aurelius O; Johansson R; Bågenholm V; Lundin D; Tholander F; Balhuizen A; Beck T; Sahlin M; Sjöberg BM; Mulliez E; Logan DT
    PLoS One; 2015; 10(7):e0128199. PubMed ID: 26147435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A glycyl radical site in the crystal structure of a class III ribonucleotide reductase.
    Logan DT; Andersson J; Sjöberg BM; Nordlund P
    Science; 1999 Mar; 283(5407):1499-504. PubMed ID: 10066165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric control of three B12-dependent (class II) ribonucleotide reductases. Implications for the evolution of ribonucleotide reduction.
    Eliasson R; Pontis E; Jordan A; Reichard P
    J Biol Chem; 1999 Mar; 274(11):7182-9. PubMed ID: 10066778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From RNA to DNA, why so many ribonucleotide reductases?
    Reichard P
    Science; 1993 Jun; 260(5115):1773-7. PubMed ID: 8511586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribonucleotide reductases.
    Jordan A; Reichard P
    Annu Rev Biochem; 1998; 67():71-98. PubMed ID: 9759483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rare combination of ribonucleotide reductases in the social amoeba Dictyostelium discoideum.
    Crona M; Avesson L; Sahlin M; Lundin D; Hinas A; Klose R; Söderbom F; Sjöberg BM
    J Biol Chem; 2013 Mar; 288(12):8198-8208. PubMed ID: 23372162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribonucleotide reductases: substrate specificity by allostery.
    Reichard P
    Biochem Biophys Res Commun; 2010 May; 396(1):19-23. PubMed ID: 20494104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The radical site in chlamydial ribonucleotide reductase defines a new R2 subclass.
    Högbom M; Stenmark P; Voevodskaya N; McClarty G; Gräslund A; Nordlund P
    Science; 2004 Jul; 305(5681):245-8. PubMed ID: 15247479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of Class Id Ribonucleotide Reductase Catalytic Subunits Reveal a Minimal Architecture for Deoxynucleotide Biosynthesis.
    Rose HR; Maggiolo AO; McBride MJ; Palowitch GM; Pandelia ME; Davis KM; Yennawar NH; Boal AK
    Biochemistry; 2019 Apr; 58(14):1845-1860. PubMed ID: 30855138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribonucleotide reductases: the evolution of allosteric regulation.
    Reichard P
    Arch Biochem Biophys; 2002 Jan; 397(2):149-55. PubMed ID: 11795865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.