BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11796170)

  • 1. A three-step strategy for targeting drug carriers to human ovarian carcinoma cells in vitro.
    Xiao Z; McQuarrie SA; Suresh MR; Mercer JR; Gupta S; Miller GG
    J Biotechnol; 2002 Mar; 94(2):171-84. PubMed ID: 11796170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modern trends in radioimmunotherapy of cancer: pretargeting strategies for the treatment of ovarian cancer.
    McQuarrie SA; Xiao Z; Miller GG; Mercer JR; Suresh MR
    Q J Nucl Med; 2001 Jun; 45(2):160-6. PubMed ID: 11476165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro &in vivo targeting behaviors of biotinylated Pluronic F127/poly(lactic acid) nanoparticles through biotin-avidin interaction.
    Xiong XY; Guo L; Gong YC; Li ZL; Li YP; Liu ZY; Zhou M
    Eur J Pharm Sci; 2012 Aug; 46(5):537-44. PubMed ID: 22538053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo targeting of OV-TL 3 immunoliposomes to ascitic ovarian carcinoma cells (OVCAR-3) in athymic nude mice.
    Nässander UK; Steerenberg PA; Poppe H; Storm G; Poels LG; De Jong WH; Crommelin DJ
    Cancer Res; 1992 Feb; 52(3):646-53. PubMed ID: 1732053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target specificity of 188Re-labeled B27.1 monoclonal antibodies to ovarian cancer cells in vivo.
    Palakurthi S; Wilson J; McQuarrie SA; Suresh MR; Mercer JR; Miller GG
    In Vivo; 2008; 22(3):321-6. PubMed ID: 18610743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting to tumor necrotic regions with biotinylated antibody and streptavidin modified liposomes.
    Pan H; Han L; Chen W; Yao M; Lu W
    J Control Release; 2008 Feb; 125(3):228-35. PubMed ID: 18022270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a bifunctional fusion protein for ovarian cancer drug delivery: single-chain anti-CA125 core-streptavidin fusion protein.
    Wang WW; Das D; McQuarrie SA; Suresh MR
    Eur J Pharm Biopharm; 2007 Mar; 65(3):398-405. PubMed ID: 17257818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunotherapy in a human ovarian cancer xenograft model with two bispecific monoclonal antibodies: OV-TL 3/CD3 and OC/TR.
    van Ravenswaay Claasen HH; Eggermont AM; Nooyen YA; Warnaar SO; Fieuren GJ
    Gynecol Oncol; 1994 Feb; 52(2):199-206. PubMed ID: 8314139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor pretargeting: role of avidin/streptavidin on monoclonal antibody internalization.
    Casalini P; Luison E; Ménard S; Colnaghi MI; Paganelli G; Canevari S
    J Nucl Med; 1997 Sep; 38(9):1378-81. PubMed ID: 9293791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunotherapy of human ovarian carcinoma with OvaRex MAb-B43.13 in a human-PBL-SCID/BG mouse model.
    Schultes BC; Zhang C; Xue LY; Noujaim AA; Madiyalakan R
    Hybridoma; 1999 Feb; 18(1):47-55. PubMed ID: 10211788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and characterization of a bispecific single-chain antibody directed against T cells and ovarian carcinoma.
    Kriangkum J; Xu B; Gervais C; Paquette D; Jacobs FA; Martin L; Suresh MR
    Hybridoma; 2000 Feb; 19(1):33-41. PubMed ID: 10768839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-step targeting approach for delivery of doxorubicin-loaded liposomes to tumour cells in vivo.
    Longman SA; Cullis PR; Choi L; de Jong G; Bally MB
    Cancer Chemother Pharmacol; 1995; 36(2):91-101. PubMed ID: 7767956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune responses to murine monoclonal antibody-B43.13 correlate with prolonged survival of women with recurrent ovarian cancer.
    Möbus VJ; Baum RP; Bolle M; Kreienberg R; Noujaim AA; Schultes BC; Nicodemus CF
    Am J Obstet Gynecol; 2003 Jul; 189(1):28-36. PubMed ID: 12861134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oregovomab: anti-CA-125 monoclonal antibody B43.13--AltaRex, B43.13, MAb B43.13, monoclonal antibody B43.13.
    Drugs R D; 2006; 7(6):379-83. PubMed ID: 17073521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting of liposomes to cells bearing nerve growth factor receptors mediated by biotinylated nerve growth factor.
    Rosenberg MB; Breakefield XO; Hawrot E
    J Neurochem; 1987 Mar; 48(3):865-75. PubMed ID: 3027260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liposome-based therapy of human ovarian cancer: parameters determining potency of negatively charged and antibody-targeted liposomes.
    Straubinger RM; Lopez NG; Debs RJ; Hong K; Papahadjopoulos D
    Cancer Res; 1988 Sep; 48(18):5237-45. PubMed ID: 3409248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary results of nanopharmaceuticals used in the radioimmunotherapy of ovarian cancer.
    McQuarrie S; Mercer J; Syme A; Suresh M; Miller G
    J Pharm Pharm Sci; 2005 Feb; 7(4):29-34. PubMed ID: 15850546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pretargeting with bispecific anti-renal cell carcinoma x anti-DTPA(In) antibody in 3 RCC models.
    van Schaijk FG; Oosterwijk E; Molkenboer-Kuenen JD; Soede AC; McBride BJ; Goldenberg DM; Oyen WJ; Corstens FH; Boerman OC
    J Nucl Med; 2005 Mar; 46(3):495-501. PubMed ID: 15750164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A human tumor xenograft model of therapy with a bispecific monoclonal antibody targeting c-erbB-2 and CD16.
    Weiner LM; Holmes M; Adams GP; LaCreta F; Watts P; Garcia de Palazzo I
    Cancer Res; 1993 Jan; 53(1):94-100. PubMed ID: 8093231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved tumor targeting by combined use of two antitenascin antibodies.
    Petronzelli F; Pelliccia A; Anastasi AM; D'Alessio V; Albertoni C; Rosi A; Leoni B; De Angelis C; Paganelli G; Palombo G; Dani M; Carminati P; De Santis R
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7137s-7145s. PubMed ID: 16203813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.