These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 11796653)

  • 1. Energetics and mechanics of human running on surfaces of different stiffnesses.
    Kerdok AE; Biewener AA; McMahon TA; Weyand PG; Herr HM
    J Appl Physiol (1985); 2002 Feb; 92(2):469-78. PubMed ID: 11796653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human hoppers compensate for simultaneous changes in surface compression and damping.
    Moritz CT; Farley CT
    J Biomech; 2006; 39(6):1030-8. PubMed ID: 16549093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Running on uneven ground: leg adjustment to vertical steps and self-stability.
    Grimmer S; Ernst M; Günther M; Blickhan R
    J Exp Biol; 2008 Sep; 211(Pt 18):2989-3000. PubMed ID: 18775936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy cost and running mechanics during a treadmill run to voluntary exhaustion in humans.
    Candau R; Belli A; Millet GY; Georges D; Barbier B; Rouillon JD
    Eur J Appl Physiol Occup Physiol; 1998 May; 77(6):479-85. PubMed ID: 9650730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The spring-mass model and the energy cost of treadmill running.
    Dalleau G; Belli A; Bourdin M; Lacour JR
    Eur J Appl Physiol Occup Physiol; 1998 Feb; 77(3):257-63. PubMed ID: 9535587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Running in the real world: adjusting leg stiffness for different surfaces.
    Ferris DP; Louie M; Farley CT
    Proc Biol Sci; 1998 Jun; 265(1400):989-94. PubMed ID: 9675909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle mechanical advantage of human walking and running: implications for energy cost.
    Biewener AA; Farley CT; Roberts TJ; Temaner M
    J Appl Physiol (1985); 2004 Dec; 97(6):2266-74. PubMed ID: 15258124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in running mechanics and spring-mass behaviour induced by a 5-hour hilly running bout.
    Degache F; Guex K; Fourchet F; Morin JB; Millet GP; Tomazin K; Millet GY
    J Sports Sci; 2013; 31(3):299-304. PubMed ID: 23051041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of prosthetic stiffness and added mass on metabolic power and asymmetry in female runners with a leg amputation.
    Ashcraft KR; Grabowski AM
    J Appl Physiol (1985); 2024 Jul; 137(1):85-98. PubMed ID: 38841756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insects running on elastic surfaces.
    Spence AJ; Revzen S; Seipel J; Mullens C; Full RJ
    J Exp Biol; 2010 Jun; 213(11):1907-20. PubMed ID: 20472778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Runners adjust leg stiffness for their first step on a new running surface.
    Ferris DP; Liang K; Farley CT
    J Biomech; 1999 Aug; 32(8):787-94. PubMed ID: 10433420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fastest runner on artificial legs: different limbs, similar function?
    Weyand PG; Bundle MW; McGowan CP; Grabowski A; Brown MB; Kram R; Herr H
    J Appl Physiol (1985); 2009 Sep; 107(3):903-11. PubMed ID: 19541739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human hopping on very soft elastic surfaces: implications for muscle pre-stretch and elastic energy storage in locomotion.
    Moritz CT; Farley CT
    J Exp Biol; 2005 Mar; 208(Pt 5):939-49. PubMed ID: 15755892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of independently altering body weight and mass on the energetic cost of a human running model.
    Ackerman J; Seipel J
    J Biomech; 2016 Mar; 49(5):691-697. PubMed ID: 26947032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does a crouched leg posture enhance running stability and robustness?
    Blum Y; Birn-Jeffery A; Daley MA; Seyfarth A
    J Theor Biol; 2011 Jul; 281(1):97-106. PubMed ID: 21569779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations.
    Beck ON; Taboga P; Grabowski AM
    J Appl Physiol (1985); 2017 Apr; 122(4):976-984. PubMed ID: 28104752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leg stiffness and stride frequency in human running.
    Farley CT; González O
    J Biomech; 1996 Feb; 29(2):181-6. PubMed ID: 8849811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leg stiffness increases with speed to modulate gait frequency and propulsion energy.
    Kim S; Park S
    J Biomech; 2011 Apr; 44(7):1253-8. PubMed ID: 21396646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of speed on leg stiffness and joint kinetics in human running.
    Arampatzis A; Brüggemann GP; Metzler V
    J Biomech; 1999 Dec; 32(12):1349-53. PubMed ID: 10569714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics and energetics of running on uneven terrain.
    Voloshina AS; Ferris DP
    J Exp Biol; 2015 Mar; 218(Pt 5):711-9. PubMed ID: 25617451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.