These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11796717)

  • 21. Animal model of oculopharyngeal muscular dystrophy.
    Uyama E; Hino H; Araki K; Takeya M; Uchino M; Yamamura K
    Acta Myol; 2005 Oct; 24(2):84-8. PubMed ID: 16550922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hsp70 and Hsp40 chaperones do not modulate retinal phenotype in SCA7 mice.
    Helmlinger D; Bonnet J; Mandel JL; Trottier Y; Devys D
    J Biol Chem; 2004 Dec; 279(53):55969-77. PubMed ID: 15494410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oculopharyngeal muscular dystrophy.
    Brais B; Rouleau GA; Bouchard JP; Fardeau M; Tomé FM
    Semin Neurol; 1999; 19(1):59-66. PubMed ID: 10711989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Oculopharyngeal muscular dystrophy: study of patients from seven Spanish families with different GCG expansions in PABP2 gene].
    Pou Serradell A; Lloreta Trull J; Corominas Torres JM; Hammouda EH; Urtizberea JA; Richard P; Brais B
    Neurologia; 2004 Jun; 19(5):239-47. PubMed ID: 15150706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease.
    Chai Y; Koppenhafer SL; Bonini NM; Paulson HL
    J Neurosci; 1999 Dec; 19(23):10338-47. PubMed ID: 10575031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy.
    Davies JE; Sarkar S; Rubinsztein DC
    Hum Mol Genet; 2006 Jan; 15(1):23-31. PubMed ID: 16311254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unequal crossing-over in unique PABP2 mutations in Japanese patients: a possible cause of oculopharyngeal muscular dystrophy.
    Nakamoto M; Nakano S; Kawashima S; Ihara M; Nishimura Y; Shinde A; Kakizuka A
    Arch Neurol; 2002 Mar; 59(3):474-7. PubMed ID: 11890856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of prion-dependent polyglutamine aggregation and toxicity by chaperone proteins in the yeast model.
    Gokhale KC; Newnam GP; Sherman MY; Chernoff YO
    J Biol Chem; 2005 Jun; 280(24):22809-18. PubMed ID: 15824100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins.
    Krobitsch S; Lindquist S
    Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1589-94. PubMed ID: 10677504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Progress in understanding the pathogenesis of oculopharyngeal muscular dystrophy.
    Fan X; Rouleau GA
    Can J Neurol Sci; 2003 Feb; 30(1):8-14. PubMed ID: 12619777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cytoplasmic targeting of mutant poly(A)-binding protein nuclear 1 suppresses protein aggregation and toxicity in oculopharyngeal muscular dystrophy.
    Abu-Baker A; Laganiere S; Fan X; Laganiere J; Brais B; Rouleau GA
    Traffic; 2005 Sep; 6(9):766-79. PubMed ID: 16101680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oculopharyngeal muscular dystrophy: potential therapies for an aggregate-associated disorder.
    Davies JE; Berger Z; Rubinsztein DC
    Int J Biochem Cell Biol; 2006; 38(9):1457-62. PubMed ID: 16530457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oculopharyngeal muscular dystrophy: a late-onset polyalanine disease.
    Brais B
    Cytogenet Genome Res; 2003; 100(1-4):252-60. PubMed ID: 14526187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oculopharyngeal muscular dystrophy-like nuclear inclusions are present in normal magnocellular neurosecretory neurons of the hypothalamus.
    Berciano MT; Villagra NT; Ojeda JL; Navascues J; Gomes A; Lafarga M; Carmo-Fonseca M
    Hum Mol Genet; 2004 Apr; 13(8):829-38. PubMed ID: 14976164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prevention of oculopharyngeal muscular dystrophy-associated aggregation of nuclear polyA-binding protein with a single-domain intracellular antibody.
    Verheesen P; de Kluijver A; van Koningsbruggen S; de Brij M; de Haard HJ; van Ommen GJ; van der Maarel SM; Verrips CT
    Hum Mol Genet; 2006 Jan; 15(1):105-11. PubMed ID: 16319127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins.
    Glover JR; Lindquist S
    Cell; 1998 Jul; 94(1):73-82. PubMed ID: 9674429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic analysis reveals that wildtype and alanine-expanded nuclear poly(A)-binding protein exhibit differential interactions in skeletal muscle.
    Banerjee A; Phillips BL; Deng Q; Seyfried NT; Pavlath GK; Vest KE; Corbett AH
    J Biol Chem; 2019 May; 294(18):7360-7376. PubMed ID: 30837270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70.
    Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD
    Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ectopic expression of a polyalanine expansion mutant of poly(A)-binding protein N1 in muscle cells in culture inhibits myogenesis.
    Wang Q; Bag J
    Biochem Biophys Res Commun; 2006 Feb; 340(3):815-22. PubMed ID: 16378590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oculopharyngeal muscular dystrophy: recent advances in the understanding of the molecular pathogenic mechanisms and treatment strategies.
    Abu-Baker A; Rouleau GA
    Biochim Biophys Acta; 2007 Feb; 1772(2):173-85. PubMed ID: 17110089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.