These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 11796940)
1. Independent component analysis of temporal sequences subject to constraints by lateral geniculate nucleus inputs yields all the three major cell types of the primary visual cortex. Szatmáry B; Lorincz A J Comput Neurosci; 2001; 11(3):241-8. PubMed ID: 11796940 [TBL] [Abstract][Full Text] [Related]
2. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models. Suder K; Funke K; Zhao Y; Kerscher N; Wennekers T; Wörgötter F Exp Brain Res; 2002 Jun; 144(4):430-44. PubMed ID: 12037629 [TBL] [Abstract][Full Text] [Related]
3. Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex. Ghose GM; Ohzawa I; Freeman RD J Neurophysiol; 1994 Jan; 71(1):330-46. PubMed ID: 8158235 [TBL] [Abstract][Full Text] [Related]
4. Temporal properties of spatial frequency tuning of surround suppression in the primary visual cortex and the lateral geniculate nucleus of the cat. Ishikawa A; Shimegi S; Kida H; Sato H Eur J Neurosci; 2010 Jun; 31(11):2086-100. PubMed ID: 20604803 [TBL] [Abstract][Full Text] [Related]
5. A Comparison of Visual Response Properties in the Lateral Geniculate Nucleus and Primary Visual Cortex of Awake and Anesthetized Mice. Durand S; Iyer R; Mizuseki K; de Vries S; Mihalas S; Reid RC J Neurosci; 2016 Nov; 36(48):12144-12156. PubMed ID: 27903724 [TBL] [Abstract][Full Text] [Related]
6. Suppression without inhibition in visual cortex. Freeman TC; Durand S; Kiper DC; Carandini M Neuron; 2002 Aug; 35(4):759-71. PubMed ID: 12194874 [TBL] [Abstract][Full Text] [Related]
7. Receptive field structure varies with layer in the primary visual cortex. Martinez LM; Wang Q; Reid RC; Pillai C; Alonso JM; Sommer FT; Hirsch JA Nat Neurosci; 2005 Mar; 8(3):372-9. PubMed ID: 15711543 [TBL] [Abstract][Full Text] [Related]
8. Opponent inhibition: a developmental model of layer 4 of the neocortical circuit. Kayser AS; Miller KD Neuron; 2002 Jan; 33(1):131-42. PubMed ID: 11779486 [TBL] [Abstract][Full Text] [Related]
9. Integrated model of visual processing. Bullier J Brain Res Brain Res Rev; 2001 Oct; 36(2-3):96-107. PubMed ID: 11690606 [TBL] [Abstract][Full Text] [Related]
10. Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. Alonso JM; Usrey WM; Reid RC J Neurosci; 2001 Jun; 21(11):4002-15. PubMed ID: 11356887 [TBL] [Abstract][Full Text] [Related]
11. Predicting functional properties of visual cortex from an evolutionary scaling law. Stevens CF Neuron; 2002 Sep; 36(1):139-42. PubMed ID: 12367512 [TBL] [Abstract][Full Text] [Related]
12. Delayed signal transmission in area 17, area 18 and the posteromedial lateral suprasylvian area of aged cats. Yao Z; Wang Z; Yuan N; Liang Z; Zhou Y Neuroscience; 2015 Mar; 289():358-66. PubMed ID: 25595968 [TBL] [Abstract][Full Text] [Related]
13. Locomotion modulates specific functional cell types in the mouse visual thalamus. Aydın Ç; Couto J; Giugliano M; Farrow K; Bonin V Nat Commun; 2018 Nov; 9(1):4882. PubMed ID: 30451819 [TBL] [Abstract][Full Text] [Related]
14. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat. Naito T; Sadakane O; Okamoto M; Sato H Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429 [TBL] [Abstract][Full Text] [Related]
15. Influence of the cortico-geniculate pathway on response properties of cat lateral geniculate neurons. Geisert EE; Langsetmo A; Spear PD Brain Res; 1981 Mar; 208(2):409-15. PubMed ID: 6260290 [TBL] [Abstract][Full Text] [Related]
16. Receptive field classes of cells in the striate cortex of the cat. Henry GH Brain Res; 1977 Sep; 133(1):1-28. PubMed ID: 902079 [No Abstract] [Full Text] [Related]
17. Three bands of oscillatory activity in the lateral geniculate nucleus of the cat visual system. Podvigin NF; Bagaeva TV; Boykova EV; Zargarov AA; Podvigina DN; Pöppel E Neurosci Lett; 2004 May; 361(1-3):83-5. PubMed ID: 15135899 [TBL] [Abstract][Full Text] [Related]
18. Synaptic Contributions to Receptive Field Structure and Response Properties in the Rodent Lateral Geniculate Nucleus of the Thalamus. Suresh V; Çiftçioğlu UM; Wang X; Lala BM; Ding KR; Smith WA; Sommer FT; Hirsch JA J Neurosci; 2016 Oct; 36(43):10949-10963. PubMed ID: 27798177 [TBL] [Abstract][Full Text] [Related]
19. S cone contributions to the magnocellular visual pathway in macaque monkey. Chatterjee S; Callaway EM Neuron; 2002 Sep; 35(6):1135-46. PubMed ID: 12354402 [TBL] [Abstract][Full Text] [Related]
20. Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity. Eguchi A; Neymotin SA; Stringer SM Front Neural Circuits; 2014; 8():16. PubMed ID: 24659956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]