These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11796940)

  • 21. Are sparse-coding simple cell receptive field models physiologically plausible?
    Watters PA
    J Integr Neurosci; 2006 Sep; 5(3):333-53. PubMed ID: 17125157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direction selectivity of synaptic potentials in simple cells of the cat visual cortex.
    Jagadeesh B; Wheat HS; Kontsevich LL; Tyler CW; Ferster D
    J Neurophysiol; 1997 Nov; 78(5):2772-89. PubMed ID: 9356425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clustered organization of neurons with similar extra-receptive field properties in the primary visual cortex.
    Yao H; Li CY
    Neuron; 2002 Aug; 35(3):547-53. PubMed ID: 12165475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus.
    Dan Y; Alonso JM; Usrey WM; Reid RC
    Nat Neurosci; 1998 Oct; 1(6):501-7. PubMed ID: 10196548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lagged cells.
    Saul AB
    Neurosignals; 2008; 16(2-3):209-25. PubMed ID: 18253059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic properties of thalamic neurons for vision.
    Alitto HJ; Usrey WM
    Prog Brain Res; 2005; 149():83-90. PubMed ID: 16226578
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Color responses of the human lateral geniculate nucleus: [corrected] selective amplification of S-cone signals between the lateral geniculate nucleno and primary visual cortex measured with high-field fMRI.
    Mullen KT; Dumoulin SO; Hess RF
    Eur J Neurosci; 2008 Nov; 28(9):1911-23. PubMed ID: 18973604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The derivation of direction selectivity in the striate cortex.
    Peterson MR; Li B; Freeman RD
    J Neurosci; 2004 Apr; 24(14):3583-91. PubMed ID: 15071106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brainstem input modulates globally the transmission through the lateral geniculate nucleus.
    Ozaki T; Kaplan E
    Int J Neurosci; 2006 Mar; 116(3):247-64. PubMed ID: 16484052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parallel processing in the corticogeniculate pathway of the macaque monkey.
    Briggs F; Usrey WM
    Neuron; 2009 Apr; 62(1):135-46. PubMed ID: 19376073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An infomax-based learning rule that generates cells similar to visual cortical neurons.
    Okajima K
    Neural Netw; 2001 Nov; 14(9):1173-80. PubMed ID: 11718418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. X and Y relay cells in cat lateral geniculate nucleus: quantitative analysis of receptive-field properties and classification.
    Bullier J; Norton TT
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):244-73. PubMed ID: 219158
    [No Abstract]   [Full Text] [Related]  

  • 33. Spatiotemporal characteristics of surround suppression in primary visual cortex and lateral geniculate nucleus of the cat.
    Shimegi S; Ishikawa A; Kida H; Sakamoto H; Hara S; Sato H
    J Neurophysiol; 2014 Aug; 112(3):603-19. PubMed ID: 25252333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attentional activation of the visual thalamic reticular nucleus depends on 'top-down' inputs from the primary visual cortex via corticogeniculate pathways.
    Montero VM
    Brain Res; 2000 May; 864(1):95-104. PubMed ID: 10793191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strobe rearing prevents the convergence of inputs with different response timings onto area 17 simple cells.
    Humphrey AL; Saul AB; Feidler JC
    J Neurophysiol; 1998 Dec; 80(6):3005-20. PubMed ID: 9862902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binocular interaction in the lateral geniculate nucleus of the monkey.
    Marrocco RT; McClurkin JW
    Brain Res; 1979 Jun; 168(3):633-7. PubMed ID: 219941
    [No Abstract]   [Full Text] [Related]  

  • 37. Spatial coding and response redundancy in parallel visual pathways of the marmoset Callithrix jacchus.
    Forte JD; Hashemi-Nezhad M; Dobbie WJ; Dreher B; Martin PR
    Vis Neurosci; 2005; 22(4):479-91. PubMed ID: 16212705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional alignment of feedback effects from visual cortex to thalamus.
    Wang W; Jones HE; Andolina IM; Salt TE; Sillito AM
    Nat Neurosci; 2006 Oct; 9(10):1330-6. PubMed ID: 16980966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Precision, reliability, and information-theoretic analysis of visual thalamocortical neurons.
    Kumbhani RD; Nolt MJ; Palmer LA
    J Neurophysiol; 2007 Nov; 98(5):2647-63. PubMed ID: 17581854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The timing of response onset and offset in macaque visual neurons.
    Bair W; Cavanaugh JR; Smith MA; Movshon JA
    J Neurosci; 2002 Apr; 22(8):3189-205. PubMed ID: 11943820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.