BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 11796942)

  • 1. Transient versus asymptotic dynamics of CaM kinase II: possible roles of phosphatase.
    Kubota Y; Bower JM
    J Comput Neurosci; 2001; 11(3):263-79. PubMed ID: 11796942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bistability in the Ca(2+)/calmodulin-dependent protein kinase-phosphatase system.
    Zhabotinsky AM
    Biophys J; 2000 Nov; 79(5):2211-21. PubMed ID: 11053103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly.
    Lisman JE; Zhabotinsky AM
    Neuron; 2001 Aug; 31(2):191-201. PubMed ID: 11502252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting cooperative calmodulin binding to CaM kinase II: a detailed stochastic model.
    Byrne MJ; Putkey JA; Waxham MN; Kubota Y
    J Comput Neurosci; 2009 Dec; 27(3):621-38. PubMed ID: 19609660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin.
    Fukunaga K; Horikawa K; Shibata S; Takeuchi Y; Miyamoto E
    J Neurosci Res; 2002 Dec; 70(6):799-807. PubMed ID: 12444602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate.
    Brown GP; Blitzer RD; Connor JH; Wong T; Shenolikar S; Iyengar R; Landau EM
    J Neurosci; 2000 Nov; 20(21):7880-7. PubMed ID: 11050107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-selective autophosphorylation of Ca2+/calmodulin-dependent protein kinase II as a synaptic encoding mechanism.
    Coomber CJ
    Neural Comput; 1998 Oct; 10(7):1653-78. PubMed ID: 9744891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation.
    Makhinson M; Chotiner JK; Watson JB; O'Dell TJ
    J Neurosci; 1999 Apr; 19(7):2500-10. PubMed ID: 10087064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular basis of CaMKII function in synaptic and behavioural memory.
    Lisman J; Schulman H; Cline H
    Nat Rev Neurosci; 2002 Mar; 3(3):175-90. PubMed ID: 11994750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Models of calmodulin trapping and CaM kinase II activation in a dendritic spine.
    Holmes WR
    J Comput Neurosci; 2000; 8(1):65-85. PubMed ID: 10798500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP.
    Blitzer RD; Connor JH; Brown GP; Wong T; Shenolikar S; Iyengar R; Landau EM
    Science; 1998 Jun; 280(5371):1940-2. PubMed ID: 9632393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversal of synaptic memory by Ca2+/calmodulin-dependent protein kinase II inhibitor.
    Sanhueza M; McIntyre CC; Lisman JE
    J Neurosci; 2007 May; 27(19):5190-9. PubMed ID: 17494705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential roles of Ca(2+)/calmodulin-dependent protein kinase II and mitogen-activated protein kinase activation in hippocampal long-term potentiation.
    Liu J; Fukunaga K; Yamamoto H; Nishi K; Miyamoto E
    J Neurosci; 1999 Oct; 19(19):8292-9. PubMed ID: 10493730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density.
    Strack S; Choi S; Lovinger DM; Colbran RJ
    J Biol Chem; 1997 May; 272(21):13467-70. PubMed ID: 9153188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postsynaptic injection of CA2+/CaM induces synaptic potentiation requiring CaMKII and PKC activity.
    Wang JH; Kelly PT
    Neuron; 1995 Aug; 15(2):443-52. PubMed ID: 7646896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled phosphatase and kinase switches produce the tristability required for long-term potentiation and long-term depression.
    Pi HJ; Lisman JE
    J Neurosci; 2008 Dec; 28(49):13132-8. PubMed ID: 19052204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CaM kinase II in long-term potentiation.
    Fukunaga K; Muller D; Miyamoto E
    Neurochem Int; 1996 Apr; 28(4):343-58. PubMed ID: 8740440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP?
    Chen HX; Otmakhov N; Strack S; Colbran RJ; Lisman JE
    J Neurophysiol; 2001 Apr; 85(4):1368-76. PubMed ID: 11287461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A working model of CaM kinase II activity in hippocampal long-term potentiation and memory.
    Fukunaga K; Miyamoto E
    Neurosci Res; 2000 Sep; 38(1):3-17. PubMed ID: 10997573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II.
    Watson JB; Khorasani H; Persson A; Huang KP; Huang FL; O'Dell TJ
    J Neurosci Res; 2002 Nov; 70(3):298-308. PubMed ID: 12391589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.