These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 11797005)
1. Scaling effects in caudal fin propulsion and the speed of ichthyosaurs. Motani R Nature; 2002 Jan; 415(6869):309-12. PubMed ID: 11797005 [TBL] [Abstract][Full Text] [Related]
2. Convergent evolution in mechanical design of lamnid sharks and tunas. Donley JM; Sepulveda CA; Konstantinidis P; Gemballa S; Shadwick RE Nature; 2004 May; 429(6987):61-5. PubMed ID: 15129279 [TBL] [Abstract][Full Text] [Related]
3. Function of the medial red muscle during sustained swimming in common thresher sharks: contrast and convergence with thunniform swimmers. Bernal D; Donley JM; McGillivray DG; Aalbers SA; Syme DA; Sepulveda C Comp Biochem Physiol A Mol Integr Physiol; 2010 Apr; 155(4):454-63. PubMed ID: 20074658 [TBL] [Abstract][Full Text] [Related]
4. Convergence in Thunniform Anatomy in Lamnid Sharks and Jurassic Ichthyosaurs. Lingham-Soliar T Integr Comp Biol; 2016 Dec; 56(6):1323-1336. PubMed ID: 27794535 [TBL] [Abstract][Full Text] [Related]
5. Skeletal convergence in thunniform sharks, ichthyosaurs, whales, and tunas, and its possible ecological links through the marine ecosystem evolution. Motani R; Shimada K Sci Rep; 2023 Oct; 13(1):16664. PubMed ID: 37794094 [TBL] [Abstract][Full Text] [Related]
6. Evolution of high-performance swimming in sharks: transformations of the musculotendinous system from subcarangiform to thunniform swimmers. Gemballa S; Konstantinidis P; Donley JM; Sepulveda C; Shadwick RE J Morphol; 2006 Apr; 267(4):477-93. PubMed ID: 16429422 [TBL] [Abstract][Full Text] [Related]
7. Taphonomic evidence for high-speed adapted fins in thunniform ichthyosaurs. Lingham-Soliar T; Plodowski G Naturwissenschaften; 2007 Jan; 94(1):65-70. PubMed ID: 17021914 [TBL] [Abstract][Full Text] [Related]
8. Biomechanics: fast fish. Summers AP Nature; 2004 May; 429(6987):31-3. PubMed ID: 15129265 [No Abstract] [Full Text] [Related]
9. Oxygen utilization and the branchial pressure gradient during ram ventilation of the shortfin mako, Isurus oxyrinchus: is lamnid shark-tuna convergence constrained by elasmobranch gill morphology? Wegner NC; Lai NC; Bull KB; Graham JB J Exp Biol; 2012 Jan; 215(Pt 1):22-8. PubMed ID: 22162850 [TBL] [Abstract][Full Text] [Related]
10. Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes. Tytell ED; Standen EM; Lauder GV J Exp Biol; 2008 Jan; 211(Pt 2):187-95. PubMed ID: 18165246 [TBL] [Abstract][Full Text] [Related]
11. Fish biorobotics: kinematics and hydrodynamics of self-propulsion. Lauder GV; Anderson EJ; Tangorra J; Madden PG J Exp Biol; 2007 Aug; 210(Pt 16):2767-80. PubMed ID: 17690224 [TBL] [Abstract][Full Text] [Related]
12. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. Borazjani I; Sotiropoulos F J Exp Biol; 2010 Jan; 213(1):89-107. PubMed ID: 20008366 [TBL] [Abstract][Full Text] [Related]
14. Review: Analysis of the evolutionary convergence for high performance swimming in lamnid sharks and tunas. Bernal D; Dickson KA; Shadwick RE; Graham JB Comp Biochem Physiol A Mol Integr Physiol; 2001 Jun; 129(2-3):695-726. PubMed ID: 11423338 [TBL] [Abstract][Full Text] [Related]
15. Red muscle function in stiff-bodied swimmers: there and almost back again. Syme DA; Shadwick RE Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1507-15. PubMed ID: 21502122 [TBL] [Abstract][Full Text] [Related]