BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 11797086)

  • 41. Dorsal Root Injury-A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury.
    Aldskogius H; Kozlova EN
    Cells; 2021 Aug; 10(9):. PubMed ID: 34571835
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Axon regeneration of spinal motoneurons following a lesion at the cord-ventral root interface.
    Cullheim S; Carlstedt T; Risling M
    Spinal Cord; 1999 Dec; 37(12):811-9. PubMed ID: 10602523
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The membrane-associated progesterone-binding protein 25-Dx: expression, cellular localization and up-regulation after brain and spinal cord injuries.
    Guennoun R; Meffre D; Labombarda F; Gonzalez SL; Gonzalez Deniselle MC; Stein DG; De Nicola AF; Schumacher M
    Brain Res Rev; 2008 Mar; 57(2):493-505. PubMed ID: 17618691
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays.
    Bareyre FM; Schwab ME
    Trends Neurosci; 2003 Oct; 26(10):555-63. PubMed ID: 14522149
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes in mRNA content of developing opossum spinal cord at stages when regeneration can and cannot occur after injury.
    Mladinic M; Wintzer M
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):317-24. PubMed ID: 12589930
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NRG1-ErbB Lost in Translation: A New Paradigm for Lung Cancer?
    Trombetta D; Rossi A; Fabrizio FP; Sparaneo A; Graziano P; Fazio VM; Muscarella LA
    Curr Med Chem; 2017; 24(38):4213-4228. PubMed ID: 28901268
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neuregulin-1 and ALS19 (ERBB4): at the crossroads of amyotrophic lateral sclerosis and cancer.
    Adashek JJ; Pandya C; Maragakis NJ; De P; Cohen PR; Kato S; Kurzrock R
    BMC Med; 2024 Feb; 22(1):74. PubMed ID: 38369520
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The pathophysiological response to spinal cord injury. The current status of related research.
    Osterholm JL
    J Neurosurg; 1974 Jan; 40(1):5-33. PubMed ID: 4585984
    [No Abstract]   [Full Text] [Related]  

  • 49. [Micro RNA and its role in the pathophysiology of spinal cord injury - a further step towards neuroregenerative medicine].
    Quinzaños-Fresnedo J; Sahagún-Olmos RC
    Cir Cir; 2015; 83(5):442-7. PubMed ID: 26162489
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spinal cord trauma and the molecular point of no return.
    Yip PK; Malaspina A
    Mol Neurodegener; 2012 Feb; 7():6. PubMed ID: 22315999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Modern aspects of pathogenesis of the trauma of the spinal cord and trunks of peripheral nerves].
    Shul'ga AE; Norkin IA; Ninel' VG; Puchin'ian DM; Zaretskov VV; Korshunova GA; Ostrovskiĭ VV; Smol'kin AA
    Ross Fiziol Zh Im I M Sechenova; 2014 Feb; 100(2):145-60. PubMed ID: 25470893
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Potential regulation by trophic factors of low-affinity NGF receptors in spinal motor neurons.
    Hagg T; Rende M; Magal E; Burnham P; Oudega M; Varon S
    Brain Res Bull; 1993; 30(3-4):347-52. PubMed ID: 8457883
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Matrix metalloproteinase signals following neurotrauma are right on cue.
    Trivedi A; Noble-Haeusslein LJ; Levine JM; Santucci AD; Reeves TM; Phillips LL
    Cell Mol Life Sci; 2019 Aug; 76(16):3141-3156. PubMed ID: 31168660
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Epigenetics of neural repair following spinal cord injury.
    York EM; Petit A; Roskams AJ
    Neurotherapeutics; 2013 Oct; 10(4):757-70. PubMed ID: 24081781
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Elucidating the Role of Apolipoprotein E Isoforms in Spinal Cord Injury-Associated Neuropathology.
    Toro CA; Das DK; Cai D; Cardozo CP
    J Neurotrauma; 2019 Dec; 36(24):3317-3322. PubMed ID: 31218915
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CNS glial scar tissue: a source of molecules which inhibit central neurite outgrowth.
    Bovolenta P; Wandosell F; Nieto-Sampedro M
    Prog Brain Res; 1992; 94():367-79. PubMed ID: 1287723
    [No Abstract]   [Full Text] [Related]  

  • 57. Gene targeting reveals multiple essential functions of the neuregulin signaling system during development of the neuroendocrine and nervous systems.
    Crone SA; Lee KF
    Ann N Y Acad Sci; 2002 Oct; 971():547-53. PubMed ID: 12438181
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spinal Cord Injuries and Nerve Dependence in Prostate Cancer.
    Rutledge A; Jobling P; Walker MM; Denham JW; Hondermarck H
    Trends Cancer; 2017 Dec; 3(12):812-815. PubMed ID: 29198437
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression of neuregulin and ErbB3 and ErbB4 after a traumatic lesion in the ventral funiculus of the spinal cord and in the intact primary olfactory system.
    Lindholm T; Cullheim S; Deckner M; Carlstedt T; Risling M
    Exp Brain Res; 2002 Jan; 142(1):81-90. PubMed ID: 11797086
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.