These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11797897)

  • 1. Summary of stationary and personal air sampling measurements made during a plutonium glovebox decommissioning project.
    Munyon WJ; Lee MB
    Health Phys; 2002 Feb; 82(2):244-53. PubMed ID: 11797897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ULTRAFINE AEROSOL INFLUENCE ON THE SAMPLING BY CASCADE IMPACTOR.
    Vasyanovich M; Mostafa MYA; Zhukovsky M
    Radiat Prot Dosimetry; 2017 Nov; 177(1-2):49-52. PubMed ID: 29036634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of plutonium aerosol collected during an accident.
    Cheng YS; Guilmette RA; Zhou Y; Gao J; Labone T; Whicker JJ; Hoover MD
    Health Phys; 2004 Dec; 87(6):596-605. PubMed ID: 15545766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sizing alpha emitting particles of aged plutonium on personal air sampler filters using CR-39 autoradiography.
    Richardson RB; Hegyi G; Starling SC
    Radiat Prot Dosimetry; 2003; 105(1-4):139-42. PubMed ID: 14526944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance evaluation of continuous air monitor (CAM) sampling heads.
    McFarland AR; Ortiz CA; Rodgers JC
    Health Phys; 1990 Mar; 58(3):275-81. PubMed ID: 2312293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle size characterization of aerosols generated during surface contaminated concrete demolition.
    MacMillan WJ; Brey RR; Harris JT
    Health Phys; 2013 May; 104(5 Suppl 2):S83-6. PubMed ID: 23528278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective dose scaling factors for use with cascade impactor sampling data in tenorm inhalation exposures.
    Kim KP; Wu CY; Birky BK; Bolch WE
    Health Phys; 2005 Oct; 89(4):359-74. PubMed ID: 16155458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of particle size for airborne UO2 dust at a fuel fabrication work station and its implication on the derivation and use of ICRP Publication 30 derived air concentration values.
    Thind KS
    Health Phys; 1986 Jul; 51(1):97-105. PubMed ID: 3455411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radon-immune air monitor for plutonium.
    Gupton ED
    Health Phys; 1984 Jan; 46(1):217-24. PubMed ID: 6693243
    [No Abstract]   [Full Text] [Related]  

  • 11. Modular glovebox connector and associated good practices for control of radioactive and chemically toxic materials.
    Hoover MD; Mewhinney CJ; Newton GJ
    Health Phys; 1999 Jan; 76(1):66-72. PubMed ID: 9883950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of air monitoring and experimental aerosol data for intake assessment for Mayak plutonium workers.
    Zaytseva YV; Tretyakov FD; Romanov SA; Miller G; Bertelli L; Guilmette RA
    Radiat Prot Dosimetry; 2007; 127(1-4):535-9. PubMed ID: 17848389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plutonium containment.
    Cohen BL
    Health Phys; 1981 Jan; 40(1):76-8. PubMed ID: 7216787
    [No Abstract]   [Full Text] [Related]  

  • 14. Aerosol collection of the (Bladewerx Corporation) breathing zone monitor and portable workplace monitor.
    Moore ME; Kennedy TJ; Dimmerling PJ
    Health Phys; 2007 Nov; 93(5 Suppl):S165-73. PubMed ID: 18049245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies.
    Brouwer DH; Gijsbers JH; Lurvink MW
    Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of aerosol sizing characteristic of an impactor using imaging plate technique.
    Rahman NM; Iida T; Saito F; Koarashi J; Yamasaki K; Yamazawa H; Moriizumi J
    Radiat Prot Dosimetry; 2007; 123(2):171-81. PubMed ID: 16936289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerosol particle size distribution of atmospheric lead-210 in northern Finland.
    Paatero J; Ioannidou A; Ikonen J; Lehto J
    J Environ Radioact; 2017 Jun; 172():10-14. PubMed ID: 28292593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uranium Aerosol Activity Size Distributions at a Nuclear Fuel Fabrication Plant.
    Hansson E; Pettersson HBL; Eriksson M
    Health Phys; 2020 Sep; 119(3):327-341. PubMed ID: 32701611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring Concentrations of Particulate 140La in the Air.
    Okada CE; Kernan W; Keillor M; Kirkham R; Sorom RD; Van Etten DM
    Health Phys; 2016 May; 110(5):418-26. PubMed ID: 27023029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution alpha spectrometry under field conditions - fast identification of alpha particle emitting radionuclides from air samples.
    Pöllänen R; Siiskonen T
    J Environ Radioact; 2006; 87(3):279-88. PubMed ID: 16469421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.