BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 11798028)

  • 1. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology.
    Lenaz G
    IUBMB Life; 2001; 52(3-5):159-64. PubMed ID: 11798028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implication of mitochondria-derived reactive oxygen species, cytochrome C and caspase-3 in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells.
    Suzuki S; Higuchi M; Proske RJ; Oridate N; Hong WK; Lotan R
    Oncogene; 1999 Nov; 18(46):6380-7. PubMed ID: 10597238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing functional integrity of mitochondria in vitro and in vivo.
    Degli Esposti M
    Methods Cell Biol; 2001; 65():75-96. PubMed ID: 11381611
    [No Abstract]   [Full Text] [Related]  

  • 5. Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse.
    Kwong LK; Sohal RS
    Arch Biochem Biophys; 2000 Jan; 373(1):16-22. PubMed ID: 10620319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain.
    Kruidering M; Van de Water B; de Heer E; Mulder GJ; Nagelkerke JF
    J Pharmacol Exp Ther; 1997 Feb; 280(2):638-49. PubMed ID: 9023274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity profile of glutathione-dependent enzymes and respiratory chain complexes in rats supplemented with antioxidants and treated with carcinogens.
    Desai VG; Casciano D; Feuers RJ; Aidoo A
    Arch Biochem Biophys; 2001 Oct; 394(2):255-64. PubMed ID: 11594740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architecture of succinate dehydrogenase and reactive oxygen species generation.
    Yankovskaya V; Horsefield R; Törnroth S; Luna-Chavez C; Miyoshi H; Léger C; Byrne B; Cecchini G; Iwata S
    Science; 2003 Jan; 299(5607):700-4. PubMed ID: 12560550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues.
    Birch-Machin MA; Turnbull DM
    Methods Cell Biol; 2001; 65():97-117. PubMed ID: 11381612
    [No Abstract]   [Full Text] [Related]  

  • 11. [Redox state of the electron-transport carriers in cardiac mitochondria: a study by the method of low-temperature EPR spectroscopy].
    Ruuge EK; Lakomkin VL; Timoshin AA
    Biofizika; 1997; 42(6):1240-6. PubMed ID: 9490110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain.
    Dröse S; Brandt U
    Adv Exp Med Biol; 2012; 748():145-69. PubMed ID: 22729857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain.
    Madrigal JL; Olivenza R; Moro MA; Lizasoain I; Lorenzo P; Rodrigo J; Leza JC
    Neuropsychopharmacology; 2001 Apr; 24(4):420-9. PubMed ID: 11182537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease.
    Nicholls DG
    Int J Biochem Cell Biol; 2002 Nov; 34(11):1372-81. PubMed ID: 12200032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species.
    McLennan HR; Degli Esposti M
    J Bioenerg Biomembr; 2000 Apr; 32(2):153-62. PubMed ID: 11768748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro effects of nicotine on mitochondrial respiration and superoxide anion generation.
    Cormier A; Morin C; Zini R; Tillement JP; Lagrue G
    Brain Res; 2001 May; 900(1):72-9. PubMed ID: 11325348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria.
    Vrbacký M; Drahota Z; Mrácek T; Vojtísková A; Jesina P; Stopka P; Houstek J
    Biochim Biophys Acta; 2007 Jul; 1767(7):989-97. PubMed ID: 17560536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria.
    Mrácek T; Pecinová A; Vrbacký M; Drahota Z; Houstek J
    Arch Biochem Biophys; 2009 Jan; 481(1):30-6. PubMed ID: 18952046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Assay of biochemical activity (respiratory complex activity, pyruvate dehydrogenase complex activity etc)for diagnosis of mitochondrial diseases].
    Kanamori T; Ohta S
    Nihon Rinsho; 2002 Apr; 60 Suppl 4():256-60. PubMed ID: 12013860
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 26.