These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 11798220)
1. Mechanism of opioid dependence and interaction between opioid receptors. Suzuki T; Kishimoto Y; Ozaki S; Narita M Eur J Pain; 2001; 5 Suppl A():63-5. PubMed ID: 11798220 [TBL] [Abstract][Full Text] [Related]
2. [Modification of morphine dependence under chronic pain and its mechanism]. Suzuki T Yakugaku Zasshi; 2001 Dec; 121(12):909-14. PubMed ID: 11766405 [TBL] [Abstract][Full Text] [Related]
3. Role of the kappa-opioid system in the attenuation of the morphine-induced place preference under chronic pain. Suzuki T; Kishimoto Y; Misawa M; Nagase H; Takeda F Life Sci; 1999; 64(1):PL1-7. PubMed ID: 10027746 [TBL] [Abstract][Full Text] [Related]
4. Involvement of peripheral opioid receptors in electroacupuncture analgesia for carrageenan-induced hyperalgesia. Taguchi R; Taguchi T; Kitakoji H Brain Res; 2010 Oct; 1355():97-103. PubMed ID: 20707990 [TBL] [Abstract][Full Text] [Related]
5. Absence of conditioned place preference or reinstatement with bivalent ligands containing mu-opioid receptor agonist and delta-opioid receptor antagonist pharmacophores. Lenard NR; Daniels DJ; Portoghese PS; Roerig SC Eur J Pharmacol; 2007 Jul; 566(1-3):75-82. PubMed ID: 17383633 [TBL] [Abstract][Full Text] [Related]
6. Direct evidence for the involvement of the mesolimbic kappa-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state. Narita M; Kishimoto Y; Ise Y; Yajima Y; Misawa K; Suzuki T Neuropsychopharmacology; 2005 Jan; 30(1):111-8. PubMed ID: 15257306 [TBL] [Abstract][Full Text] [Related]
7. Decreased motivational properties of morphine in mouse models of cancerous- or inflammatory-chronic pain: implication of supraspinal neuropeptide FF(2) receptors. Betourne A; Familiades J; Lacassagne L; Halley H; Cazales M; Ducommun B; Lassalle JM; Zajac JM; Frances B Neuroscience; 2008 Nov; 157(1):12-21. PubMed ID: 18804517 [TBL] [Abstract][Full Text] [Related]
8. Morphine sex-dependently induced place conditioning in adult Wistar rats. Karami M; Zarrindast MR Eur J Pharmacol; 2008 Mar; 582(1-3):78-87. PubMed ID: 18191832 [TBL] [Abstract][Full Text] [Related]
9. Mu but not delta and kappa opioid receptor involvement in ventrolateral orbital cortex opioid-evoked antinociception in formalin test rats. Xie YF; Wang J; Huo FQ; Jia H; Tang JS Neuroscience; 2004; 126(3):717-26. PubMed ID: 15183520 [TBL] [Abstract][Full Text] [Related]
10. The roles of different subtypes of opioid receptors in mediating the nucleus submedius opioid-evoked antiallodynia in a neuropathic pain model of rats. Wang JY; Zhao M; Yuan YK; Fan GX; Jia H; Tang JS Neuroscience; 2006; 138(4):1319-27. PubMed ID: 16472929 [TBL] [Abstract][Full Text] [Related]
11. Antinociceptive and adverse effects of mu- and kappa-opioid receptor agonists: a comparison of morphine and U50488-H. Gallantine EL; Meert TF Basic Clin Pharmacol Toxicol; 2008 Nov; 103(5):419-27. PubMed ID: 18699797 [TBL] [Abstract][Full Text] [Related]
12. Anti-exudative effects of opioid receptor agonists in a rat model of carrageenan-induced acute inflammation of the paw. Romero A; Planas E; Poveda R; Sánchez S; Pol O; Puig MM Eur J Pharmacol; 2005 Mar; 511(2-3):207-17. PubMed ID: 15792790 [TBL] [Abstract][Full Text] [Related]
13. Antinociceptive effects of meptazinol and its isomers on carrageenan-induced thermal hyperalgesia in rats. Wang PF; Zhang YQ; Qiu ZB; Zhao ZQ Sheng Li Xue Bao; 2004 Jun; 56(3):295-300. PubMed ID: 15224140 [TBL] [Abstract][Full Text] [Related]
14. Effects of carrageenan and morphine on acute inflammation and pain in Lewis and Fischer rats. Fecho K; Manning EL; Maixner W; Schmitt CP Brain Behav Immun; 2007 Jan; 21(1):68-78. PubMed ID: 16603335 [TBL] [Abstract][Full Text] [Related]
15. Organizational and activational effects of testosterone on carrageenan-induced inflammatory pain and morphine analgesia. Borzan J; Fuchs PN Neuroscience; 2006 Dec; 143(3):885-93. PubMed ID: 17008018 [TBL] [Abstract][Full Text] [Related]
16. Peripherally mediated antinociception of the mu-opioid receptor agonist 2-[(4,5alpha-epoxy-3-hydroxy-14beta-methoxy-17-methylmorphinan-6beta-yl)amino]acetic acid (HS-731) after subcutaneous and oral administration in rats with carrageenan-induced hindpaw inflammation. Bileviciute-Ljungar I; Spetea M; Guo Y; Schütz J; Windisch P; Schmidhammer H J Pharmacol Exp Ther; 2006 Apr; 317(1):220-7. PubMed ID: 16339394 [TBL] [Abstract][Full Text] [Related]
17. Roles of different subtypes of opioid receptors in mediating the ventrolateral orbital cortex opioid-induced inhibition of mirror-neuropathic pain in the rat. Zhao M; Wang JY; Jia H; Tang JS Neuroscience; 2007 Feb; 144(4):1486-94. PubMed ID: 17184926 [TBL] [Abstract][Full Text] [Related]
18. Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gbetagamma signaling. Wang HY; Friedman E; Olmstead MC; Burns LH Neuroscience; 2005; 135(1):247-61. PubMed ID: 16084657 [TBL] [Abstract][Full Text] [Related]
19. Involvement of opioid receptors in electroacupuncture-produced anti-hyperalgesia in rats with peripheral inflammation. Zhang RX; Lao L; Wang L; Liu B; Wang X; Ren K; Berman BM Brain Res; 2004 Sep; 1020(1-2):12-7. PubMed ID: 15312782 [TBL] [Abstract][Full Text] [Related]
20. Role of spinal 5-HT(1A) receptors in morphine analgesia and tolerance in rats. Bardin L; Colpaert FC Eur J Pain; 2004 Jun; 8(3):253-61. PubMed ID: 15109976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]