These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11799003)

  • 1. Creep behavior of a rabbit model of ligament laxity after electrothermal shrinkage in vivo.
    Wallace AL; Hollinshead RM; Frank CB
    Am J Sports Med; 2002; 30(1):98-102. PubMed ID: 11799003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrothermal shrinkage reduces laxity but alters creep behavior in a lapine ligament model.
    Wallace AL; Hollinshead RM; Frank CB
    J Shoulder Elbow Surg; 2001; 10(1):1-6. PubMed ID: 11182728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative effects of monopolar radiofrequency energy and conservative management of mechanical properties of elongated lateral collateral ligament in rabbits: an experimental study.
    Ilhami K; Eray BM; Gokhan M; Ulukan I; Levent A
    Clin Biomech (Bristol, Avon); 2004 Feb; 19(2):184-9. PubMed ID: 14967582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medial collateral ligament autografts have increased creep response for at least two years and early immobilization makes this worse.
    Thornton GM; Boorman RS; Shrive NG; Frank CB
    J Orthop Res; 2002 Mar; 20(2):346-52. PubMed ID: 11918315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ligament repair on laxity and creep behavior of an early healing ligament scar.
    Majima T; Lo IK; Marchuk LL; Shrive NG; Frank CB
    J Orthop Sci; 2006 May; 11(3):272-7. PubMed ID: 16721529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Healing ligaments have decreased cyclic modulus compared to normal ligaments and immobilization further compromises healing ligament response to cyclic loading.
    Thornton GM; Shrive NG; Frank CB
    J Orthop Res; 2003 Jul; 21(4):716-22. PubMed ID: 12798073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and mechanical adaptations of rabbit medial collateral ligament after anterior cruciate ligament transection.
    Bray RC; Doschak MR; Gross TS; Zernicke RF
    J Orthop Res; 1997 Nov; 15(6):830-6. PubMed ID: 9497807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model.
    Thornton GM; Shrive NG; Frank CB
    J Orthop Res; 2002 Sep; 20(5):967-74. PubMed ID: 12382961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of ligament laxity by electrothermal shrinkage or surgical plication: a morphologic and mechanical comparison.
    Hill AM; Jones IT; Hansen U; Suri A; Sandison A; Moss J; Wallace AL
    J Shoulder Elbow Surg; 2007; 16(1):95-100. PubMed ID: 17030129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creep behavior of a rabbit model of ligament laxity after electrothermal shrinkage in vivo.
    Ozenci AM; Panjabi MM
    Am J Sports Med; 2002; 30(4):630; author reply 630. PubMed ID: 12130421
    [No Abstract]   [Full Text] [Related]  

  • 11. Healing of the rabbit medial collateral ligament following an O'Donoghue triad injury: effects of anterior cruciate ligament reconstruction.
    Engle CP; Noguchi M; Ohland KJ; Shelley FJ; Woo SL
    J Orthop Res; 1994 May; 12(3):357-64. PubMed ID: 8207589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altering ligament water content affects ligament pre-stress and creep behaviour.
    Thornton GM; Shrive NG; Frank CB
    J Orthop Res; 2001 Sep; 19(5):845-51. PubMed ID: 11562131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early medial collateral ligament scars have inferior creep behaviour.
    Thornton GM; Leask GP; Shrive NG; Frank CB
    J Orthop Res; 2000 Mar; 18(2):238-46. PubMed ID: 10815824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of medial collateral ligament insufficiency on the reconstructed anterior cruciate ligament: a study in the rabbit.
    Ichiba A; Nakajima M; Fujita A; Abe M
    Acta Orthop Scand; 2003 Apr; 74(2):196-200. PubMed ID: 12807329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-assisted measurements of coronal knee joint laxity in vitro are related to low-stress behavior rather than structural properties of the collateral ligaments.
    Wilson WT; Deakin AH; Wearing SC; Payne AP; Clarke JV; Picard F
    Comput Aided Surg; 2013; 18(5-6):181-6. PubMed ID: 23697384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue is more damaging than creep in ligament revealed by modulus reduction and residual strength.
    Thornton GM; Schwab TD; Oxland TR
    Ann Biomed Eng; 2007 Oct; 35(10):1713-21. PubMed ID: 17629791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament.
    Thornton GM; Oliynyk A; Frank CB; Shrive NG
    J Orthop Res; 1997 Sep; 15(5):652-6. PubMed ID: 9420592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic loading causes faster rupture and strain rate than static loading in medial collateral ligament at high stress.
    Thornton GM; Schwab TD; Oxland TR
    Clin Biomech (Bristol, Avon); 2007 Oct; 22(8):932-40. PubMed ID: 17602807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular physiology and long-term healing of partial ligament tears.
    Bray RC; Leonard CA; Salo PT
    J Orthop Res; 2002 Sep; 20(5):984-9. PubMed ID: 12382963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The early effects of joint immobilization on medial collateral ligament healing in an ACL-deficient knee: a gross anatomic and biomechanical investigation in the adult rabbit model.
    Bray RC; Shrive NG; Frank CB; Chimich DD
    J Orthop Res; 1992 Mar; 10(2):157-66. PubMed ID: 1740733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.