These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 11799255)

  • 1. Experiment of fractioning animal cell culturing solution in high concentration under microgravity.
    Okusawa T; Tsubouchi K
    Biol Sci Space; 2001 Oct; 15 Suppl():S130. PubMed ID: 11799255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free-flow isotachophoresis under micro-gravity.
    Hirokawa T; Ikuta N; Ishikawa M; Murakami R; Hayakawa S
    Biol Sci Space; 2000 Oct; 14(3):260-1. PubMed ID: 12561871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioprocessing in microgravity: free flow electrophoresis of C. elegans DNA.
    Kobayashi H; Ishii N; Nagaoka S
    J Biotechnol; 1996 Jun; 47(2-3):367-76. PubMed ID: 8987575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of bacterial cells by free flow electrophoresis under microgravity: a result of the SpaceLab-Japan project on Space Shuttle flight STS-47.
    Akiba T; Nishi A; Takaoki M; Matsumiya H; Tomita F; Usami R; Nagaoka S
    Acta Astronaut; 1995 Aug; 36(3):177-81. PubMed ID: 11540748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolution rate of hen egg-white lysozyme crystal under microgravity.
    Niimura N; Kurihara K; Ataka M
    Biol Sci Space; 2001 Oct; 15 Suppl():S176. PubMed ID: 11799256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experiment facilities for life science experiments in space.
    Uchida S
    Biol Sci Space; 2004 Nov; 18(3):140-1. PubMed ID: 15858360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioprocessing in microgravity: applications of continuous flow electrophoresis to rat anterior pituitary particles.
    Hymer WC; Salada T; Cenci R; Krishnan K; Seaman GV; Snyder R; Matsumiya H; Nagaoka S
    J Biotechnol; 1996 Jun; 47(2-3):353-65. PubMed ID: 8987574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of feasibility of automated osteoblastic line culture in space flight.
    Guignandon A; Genty C; Vico L; Lafage-Proust MH; Palle S; Alexandre C
    Bone; 1997 Feb; 20(2):109-16. PubMed ID: 9028534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for "minimal growth maintenance" of cell cultures: a perspective on management for extended duration experimentation in the microgravity environment of a Space station.
    Krikorian AD
    Bot Rev; 1996; 62(1):41-108. PubMed ID: 11540094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity.
    Hatton JP; Lewis ML; Roquefeuil SB; Chaput D; Cazenave JP; Schmitt DA
    J Cell Biochem; 1998 Aug; 70(2):252-67. PubMed ID: 9671231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of DNA by free flow electrophoresis in space.
    Kobayashi H; Ishii N
    Biol Sci Space; 2001 Oct; 15 Suppl():S129. PubMed ID: 11799254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein separation by continuous-flow electrophoresis in microgravity.
    Clifton MJ; Roux-de Balmann H; Sanchez V
    AIChE J; 1996 Jul; 42(7):2069-79. PubMed ID: 11539848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of biological molecules by continuous flow electrophoresis in the Second International Microgravity Laboratory.
    Clifton MJ; Roux-de Balmann H; Sanchez V; Bleuzen-Mariotte V; Schoot BM
    J Biotechnol; 1996 Jun; 47(2-3):341-52. PubMed ID: 11536767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of exposure to microgravity on the development and structural organisation of plant protoplasts flown on Biokosmos 9.
    Rasmussen O; Klimchuk DA; Kordyum EL; Danevich LA; Tarnavskaya EB; Lozovaya VV; Tairbekov MG; Baggerud C; Iversen TH
    Physiol Plant; 1992 Jan; 84(1):162-70. PubMed ID: 11541143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The C5 Unit: a semi-automatic cell culture device suitable for experiments under microgravity.
    Vens C; Kump B; Münstermann B; Heinlein UA
    J Biotechnol; 1996 Jun; 47(2-3):203-14. PubMed ID: 9026045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies of cell biology experimentation in space.
    Cogoli A
    J Gravit Physiol; 2004 Mar; 11(1):111-6. PubMed ID: 16145820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoresis in space.
    Bauer J; Hymer WC; Morrison DR; Kobayashi H; Seaman GV; Weber G
    Adv Space Biol Med; 1999; 7():163-212. PubMed ID: 10660776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of cell culture flasks designed for experiment under altered gravity-vector conditions.
    Gyotoku J; Nagase M; Ando N; Tanigaki F; Takaoki M
    Biol Sci Space; 2003 Oct; 17(3):194-5. PubMed ID: 14676370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional growth of human endothelial cells in an automated cell culture experiment container during the SpaceX CRS-8 ISS space mission - The SPHEROIDS project.
    Pietsch J; Gass S; Nebuloni S; Echegoyen D; Riwaldt S; Baake C; Bauer J; Corydon TJ; Egli M; Infanger M; Grimm D
    Biomaterials; 2017 Apr; 124():126-156. PubMed ID: 28199884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell bioprocessing in space: applications of analytical cytology.
    Todd P; Hymer WC; Morrison DR; Goolsby CL; Hatfield JM; Kunze ME; Motter K
    Physiologist; 1988; 31(1 Suppl):S52-5. PubMed ID: 11538247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.